博 士 學 位 論 文


토마토 우량 접목묘 생산을 위한 환경조건과 정식 후 시비량에 따른 작형별 생육




忠南大學校 大學

園藝學科 園藝學專



李   煥   九



指導敎授   李  永  馥












2005年 8月




토마토 우량 접목묘 생산을 위한 환경조건과 정식 후 시비량에 따른 작형별 생육



指導敎授   李  永  馥




이 論文을 農學博士學位

請求論文으로 提出함



2005年 4月





忠 南 大 學 校  大 學 院


園藝學科 園藝學專


李   煥   九




李煥九의 農學博士學位

請求論文으로 認准함



2005年 6月




委員長 


委  員 


委  員 


委  員 


委  員 



忠南大學校 大學院



목   차


Ⅰ. 서  언………………………………………………

1

Ⅱ. 연 구 사……………………………………………

4

Ⅲ. 재료 및 방법………………………………………

17

1. 활착실 환경조건에 따른 토마토 접목묘 생산…………………

17

가. 피복자재에 따른 활착률 및 묘소질…………………………

17

나. 활착실 종류에 따른 활착률 및 묘소질………………………

18

2. 활착실 환경조건에 따른 토마토 접목묘의 소질…………………

19

가. 피복자재와 활착실 종류……………………………………

20

나. 환기 시기와 지연 접목………………………………………

20

3. 접목묘 재배 시 시비량이 생육, 수량 및 품질에 미치는 영향…

21

가. 촉성재배…………………………………………………………

21

나. 반촉성재배………………………………………………………

22

다. 억제재배…………………………………………………………


23


Ⅳ. 결과 및 고찰……………………………………………………

25

1. 활착실 환경조건에 따른 토마토 접목묘 생산…………………

25

가. 피복자재에 따른 활착률 및 묘소질…………………………

25

나. 활착실 종류에 따른 활착률 및 묘소질………………………

33

2. 활착실 환경조건에 따른 토마토 접목묘의 소질…………………

49

가. 피복자재와 활착실 종류……………………………………

49

나. 환기 시기와 지연 접목………………………………………

53

3. 접목묘 재배 시 시비량이 생육, 수량 및 품질에 미치는 영향

55

가. 촉성재배………………………………………………………‥

55

나. 반촉성재배………………………………………………………

61

다. 억제재배…………………………………………………………


68


Ⅴ. 적   요……………………………………………………………


78


Ⅵ. 인용문헌……………………………………………………………


84


ABSTRACT…………………………………………………………

96














- ⅰ -

List of Tables


Table 1.



Light intensities and temperatures in propagation facilities of grafted tomato seedlings on influenced by various shading materials.…………………………………………………………‥…



25

Table 2.




The growth characteristics of two grafted seedlings (Koko /Kagemusya, Momotaroyork/Kagemusya) as influenced by various shading materials during acclimation in bench propagation facilities.…………………………………………………




30

Table 3.




The growth characteristics of two grafted seedlings (Koko /Kagemusya, Momotaroyork/Kagemusya) as influenced by various shading materials during acclimation in bench propagation facilities.‥………………………………………………




32

Table 4.



Light intensities and temperatures in propagation facilities of grafted tomato seedlings as influenced by various shading materials.………………………………………‥‥……‥…‥…



34

Table 5.



The growth characteristics of two grafted tomato seedlings (Koko/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.……



38

Table 6.




The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.…………………………………………………………………




39

Table 7.



The growth characteristics of two grafted tomato seedlings (Koko/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.……



43


- ⅱ -

Table  8.




The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.…………………………………………………………………




44

Table  9.



The growth characteristics of two grafted tomato seedlings (Koko/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.……



47

Table 10.




The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.…………………………………………………………………




48

Table 11.



Effect of shading materials on light intensities and temperatures in two types propagation facilities for production of grafted tomato seedlings.………………………………………………………



49

Table 12.




The growth characteristics of two grafted tomato seedlings (Dessert/Solution, Legend/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.…………………………………………………




51

Table 13.




The node of flower clusters in two grafted tomato seedlings (Dessert/Solution, Legend/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.‥………………………………………………




52

Table 14.


Chemical properties of soil analysed before forcing culture of grafted tomatoes.………………………………………………………


56

Table 15.


Chemical properties of soil analysed after forcing culture of grafted tomatoes.………………………………………………………


56


- ⅲ -

Table 16.



Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Momotaroyork/Kagemusya) in forcing culture.…………………………………………………………



57

Table 17.


Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Koko/Kagemusya) in forcing culture.………………


58

Table 18.


Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya) in forcing culture.……


58

Table 19.



Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Koko/Kagemusya, Momotaroyork/Kagemusya) in forcing culture.……………………………………………………



60

Table 20.


Chemical properties of soil analysed before semi- forcing culture of grafted tomatoes.…………………………………………


61

Table 21.


Chemical properties of soil analysed after semi- forcing culture  of grafted tomatoes.………………………………………


62

Table 22.



Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi- forcing culture.………………………………………………………………



63

Table 23.



Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in semi- forcing culture.………………………………………………



64

Table 24.



Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi- forcing culture.…………………………………………………………………



65

Table 25.



Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in semi- forcing culture.………………………………………………



66


- ⅳ -

Table 26.



Effects N- K2O of fertilizer levels on the fruit quality of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi - forcing culture.………………………………………………………



67

Table 27.



Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork /Solution) in  semi- forcing culture.………………………………



68

Table 28.


Chemical properties of soil analysed before retarding culture of grafted tomatoes.…………………………………………………


69

Table 29.


Chemical properties of soil analysed after retarding culture of grafted tomatoes.…………………………………………………


70

Table 30. 



Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.…………………………………………………………………



71

Table 31.



Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in retarding culture.…………………………………………………



72

Table 32.



Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.…………………………………………………………………



74

Table 33.



Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in retarding culture.…………………………………………………



75

Table 34.



Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.…………………………………………………



76

Table 35.



Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork /Solution) in retarding culture.……………………………………



77


- ⅴ -

List of Figures


Fig. 1.




Effects of shading materials during acclimation in bench propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Kagemusya, Momotaroyork /Kagemusya).…………………………………………………………




29

Fig. 2.




Comparison of grafted tomato seedlings (Koko/Kagemusya, Momotaroyork/Kagemusya) on Nov. 8 as influenced various by shading materials during acclimation in bench propagation facilities.………………………………………………………………




31

Fig. 3.




Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Solution, Momotaroyork /Solution).‥……………………………………………………………




36

Fig. 4.




Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Solution, Momotaroyork /Solution).…‥…………………………………………………………




41

Fig. 5.




Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of twodifferent tomatoes (Koko/Solution, Momotaroyork /Solution).………………………………………………………………




46

Fig. 6.


Formation of aerial root in scion caused by delayed ventilation in propagation facilities.………………………………


54

Fig. 7.


Shooting from axillary bud of stock tomato caused by delayed grafting.…………………………………………………………………


54


- ⅵ -

Ⅰ. 서     언


토마토(Lycopersion esculentum Mill)는 연중 지속적으로 소비될 뿐만 아니라 건강식품으로 알려지면서 최근에 재배면적이 증가추세에 있다. 국립농산물품질관리원의 보고에 의하면 2004년 국내의 토마토 총 재배면적은 5,883ha이고,이 중 시설재배 면적이 5,624ha, 노지재배 면적이 259ha로서 대부분 시설에서 재배되고 있다. 또한 국내 총생산량은 394,621M/T이며, 이 중 시설재배 생산이 382,968M/T, 노지재배 생산이 11,653M/T이다.

시설재배는 시설물의 건축에 많은 경비가 소요된다. 따라서 재배농가에서는 시설물의 이용효율 증대를 통해 소요된 경비를 회수하기 위한 노력을 할 수 밖에 없으며, 이러한 노력이 주년재배나 연작의 형태로 나타난다. 특히 국내 시설재배지의 관행적인 재배형태는 비료나 노동력을 많이 투입하고 수확량을 높이려는 대표적인 집약농업이다. 시비한 모든 비료가 작물에 의해 흡수되고 잔존하는 비료의 양이 적다면 문제가 크지 않지만 많은 양의 비료가 작물에 흡수되지 않은 상태로 토양에 그대로 잔존하게 된다. 또한 작물에 따라 생육을 위한 각 무기원소 상호간의 최적 비율이 다르고 잔존하는 비료도 불균형 상태로 존재하여 작물 생육에 악 영향을 미치는 것도 많이 보고되었다. 이미 농촌진흥청이나 국내의 각 연구기관에서 시설재배지 토양의 염류집적 상태의 심각성, 토양 물리적 특성의 악화, 또 연작에 의한 각종 병원균의 만연 등에 관해 많은 문제점을 제시하고 있다.

시설재배농가에서는 연작재배에서 문제되는 토양전염성 병해충, 토양염류집적 등의 문제를 회피하기 위하여 작물을 정식하기 전 토양소독 및 관개수를 이용하여 토양 용탈을 관행적으로 하고 있다. 그러나 토양소독이나 용탈을 통해 발생되는 병해충이나 염류집적 문제를 회피하기에는 한계가 있으며, 내병성 또는 내염성 품종을 대목으로 하고 원하는 품종을 접수로 한 접목을 통해 연작장해를 극복하고 있다. 보편적으로 대목으로 이용되는 품종들은 내병성 및 내염성이 강하고 근권부가 잘 발달하므로 양‧수분 흡수력이 뛰어나 지상부의 생육을 우량하게 한다.


- 1 -

원예작물의 접목은 호접, 삽접, 할접, 포접 등 다양한 방법으로 수행되고 있는데, 접목시 활착률을 높이기 위하여는 방법에 관계없이 대목과 접수의 형성층이 잘 밀착되고, 활착기간동안 환경조건이 적절하게 조절되어야 한다. 활착실의 환경이 최적조건으로 유지되면 활착 기간 중 대목과 접수가 충분한 함수량을 유지하고, 접목 부위간의 세포분열 및 신장이 활발하여 유합이 잘되고, 활착률을 높일 수 있다. 접목 부위의 유합에 영향을 미치는 대기 환경조건으로서 접목실의 상대습도 및 온도, 그리고 일사량 등을 열거할 수 있는데, 활착실의 상대습도는 포화상태를 유지하여야 잎의 기공을 통한 수분 상실을 막고 식물세포의 적절한 팽압 유지를 통한 세포신장에 중요한 요인으로 작용한다. 또한 대기온도는 일반적으로 24~27℃가 가장 바람직한 온도로 알려져 있으며, 온도가 낮을 경우에는 세포의 유합조직 형성이 느리고, 온도가 너무 높을 경우에는 결합 부위의 세포가 고사하여 유합조직이 형성되지 않는 것으로 알려져 있다. 다음으로 일사량이 과도하게 높을 경우에는 엽온을 상승시키는 원인이 되어 기공이 열리고 식물체의 함수량 저하를 통해 유합조직 형성에 악 영향을 미치는 것으로 알려져 있다.

과거에는 접목이 개별 농가에서 이루어져 활착률이 낮고 효율성이 떨어지며 활착 및 순화단계에서 환경관리를 적절하게 하지 못해 본포 정식 후 많은 문제점이 야기되어 왔다. 그러나 최근에는 대부분의 농가에서 전문 육묘업자가 생산한 접목묘를 구입하여 이용하는 추세로, 전문 육묘시설에서는 활착환경을 정밀하게 조절하여 활착률을 높이고, 정식 후 재배에 적합하도록 묘소질을 조절하고 있다. 국내의 육묘장에서는 활착실의 온도, 습도 및 일사량을 조절하기 위하여 다양한 차광률로 제조된 피복자재를 사용하거나, 습도 유지 및 온도 조절을 위해 독특하게 제작된 벤치에서 육묘하고 있다. 그러나 전문 육묘장이나 일반 재배농가의 접목묘 생산에서 접목묘의 활착률이 계절 차이에 따른 환경요인에 의하여 많은 영향을 받기 때문에 관련 연구결과가 도출되어야 재배농가에서 이를 활용하여 시행착오를 줄일 수 있다. 특히 환경 요인뿐만 아니라 접목묘의 생산과정에서 발생하는 묘의 도장현상, 화방형성 지연, 접목 부위의 발근 등 생리장해와, 본포 정식 후 최적의 생육과 수량을 증대시킬 수 있는 시비 및 관리 방법에 대한 결과도 필요하다고 판단된다.


- 2 -

따라서 접목묘 대량생산을 위하여 실용화가 용이한 접목활착 환경조건을 구명하고자 본 연구를 수행하였다. 또한 토마토 접목재배의 경우 대목이 흡비력이 강하여 과번무로 인한 수량 감소 및 품질 저하의 원인이 되므로 시비농도 조절이 접목묘의 생육 및 수량에 미치는 영향을 구명하여 적정 시비체계 확립을 위한 기초자료를 확보하고자 본 연구를 수행하였다.

























- 3 -

Ⅱ. 연  구  사


1. 접목묘의 이용


시설하우스에서 토마토를 연작 재배할 때 많이 발생하는 토양전염성 병해충은 정식 전 토양살균제인 클로로피크린(chloropicrin)을 처리하거나 내병성 대목을 사용한 접목묘를 이용함으로써 방제 또는 회피가 가능하였지만(Iizuka 등, 1988), 최근의 농약 살포에 의한 방제는 환경오염 요인으로 문제시 되면서 농약살포의 횟수 및 양을 줄이려는 국제적인 추세를 고려할 때 농약의 사용보다는 접목묘 재배의 방향으로 확대되어가고 있다. 이러한 현황을 반영하듯 접목묘의 이용을 통한 병 저항성 증대, 생육 촉진, 품질 향상 및 수량 증대 등에 관해 많은 연구 결과들이 보고되었다(近勝, 1974; 甲田과 萩原, 1978; Lee, 1989, 1994; Park과 Chung, 1989; 鈴木, 1990). 최근에는 접목묘 사용이 내병성 증대의 목적 외에도 대목의 저온 신장성과 왕성한 흡비력 때문에 촉성, 반촉성 및 억제재배를 하는 시설에서 많이 이용하고 있다. 

과거에는 채소작물의 접목묘 이용이 박과 채소에서 주류를 이루었지만 최근에는 토마토, 가지, 고추 등 가지과 작물에서도 보편화되었으며 수박은 90%, 참외와 오이는 70% 내외가 접목재배를 하고 있다(Hwang 등, 1995). 일본에서는 수박 93%, 오이 72%, 토마토 32%, 가지의 29%가 접목재배 되고 있고(NVOTRI, 1993), 대만과 중국에서도 박과 채소를 중심으로 접목재배가 확산되고 있는 추세이다(渡部와 板木, 1990; Oda, 1995).


2. 접목 방법


접목은 대목과 접수의 유관속 부위를 서로 연결시키는 것으로 대목과 접수의 절단면을 서로 부착 연결하면 절단면에서 새로운 형성층으로 분화하여 대목과 접수의 유관속이 연결된다(嶋田, 1980). 접목 방법에서 井上과 土岐(1987)은 대목의 생장점을 제거한 후 수직으로 칼 자욱을 낸 후 한쪽 면을 비스듬히 절단한접수를 칼자욱을 낸 부위에 꽃는 삽접, 대목과 접수가 플러그 트레이에 심겨져


- 4 -

있는 상태에서 대목의 줄기를 아래쪽으로 비스듬히 칼집을 내고 접수는 같은 높이에서 반대 방향으로 줄기에 칼집을 낸 후 칼집을 낸 부위를 접착시키고 클립으로 고정하는 호접, 대목의 줄기를 수평으로 자른 후 줄기의 중앙 부분을 5mm 정도 접목용 칼로 칼집을 내고 쐐기 모양으로 비스듬히 아랫부분을 절단한 접수를 절단면에 끼우고 클립으로 고정하는 할접으로 분류하였다. 그 들은 삽접이 다른 접목법보다 활착률이 좋았다고 하였다. 그러나 高尾와 田中(1984)는 채소작물의 접목을 호접, 삽접, 할접으로 구분하였고, 호접법이 다른 접목법보다 활착률이 높았다고 보고하였으며, 眞柄(1978)은 호접, 할접, 삽접, 포접을 실시한 결과, 호접이 다른 접목법보다 활착률이 높았다고 보고하였다. 

국내에서 수행된 연구결과로 Lee 등(1997a)과 정 등(1997)은 토마토 접목 20일 후 활착률을 조사한 결과 대목에 따른 활착률은 차이를 보이지 않았으며, 접목방법에 따른 활착률은 핀접이 91.1%로 가장 높았고 삽접 84.8%, 호접이 68.6%로 가장 낮았다고 보고하였다. 이상과 같이 활착률에서 차이가 발생하는 원인은 Lee 등(1997a)이 보고한 바와 같이 접목하는 사람의 접목기술 및 숙련도가 다르고, 접목 후 환경관리가 다르기 때문이라고 추정하였다.

수박 접목묘의 대량생산에서 접목방법의 선택은 접목에 소요되는 노동력 절감과 활착률이 가장 중요한 기준이 된다. 노동력만을 고려할 때 꽂이접과 편엽 절단접이 유리하고 완전절단접도 활착률만 높일 수 있다면 플러그 육묘에서 발생 가능성이 높은 도장묘 방지에 있어서 유리할 것이라는 하였다(조 등, 1995). 그러나 Oda 등(1992)은 대목과 접수의 접합 면적이 많아지면 유관속끼리의 접합면이 많아져서 유관속을 연결하는데 시간이 적게 소요되며 활착률이 높았고, 접목 방법을 선택함에 있어서도 유관속의 접합 면적이 많은 방법을 택하는 것이 바람직하다고 하였다.

채소작물의 접목을 위해서는 대목과 접수가 적당한 초장 및 관부직경을 갖도록 플러그 트레이에서 육묘된 후 접목을 한다. 수박의 경우 접목 전 육묘단계에서의 플러그 셀 크기에 관계없이 접목 후 활착률이 비슷한 경향을 보였으며, 초장, 엽생장, 생체중 및 건물중 등 종합적인 묘 생육에 있어서는 셀 크기가 질수록 양호하다고 하였다(조 등, 1995). 그러나 접목묘의 공정생산에서 접목 전육묘단계에서의 플러그 셀 크기는 묘 생육과 경제성을 고려하여 결정하여야


- 5 -

하며 50공 플러그 트레이가 적절하다고 하였다(조 등, 1995).



3. 환경조건이 접목 후 활착에 미치는 영향


가. 묘령


Itagi 등(1990)은 토마토의 접목을 위해서는 본엽 2.5~3매인 대목과 접수를 선발하여 접수의 절단면을 비스듬히 자른 경사면 절단 접목법을 하고, 접목 전용 클립으로 고정한 후, 활착시설에서 단기간에 활착시킬 경우 대량 생산에서의 생산효율을 높일 수 있다고 하였다. Kawai 등(1996)도 토마토의 적당한 접목 시기는 접수 및 대목 모두 본엽 2~3매인 시기라고 하였다.

Lee 등(1997b)은 참외에서 접수의 묘령에 따른 활착률을 조사하여 보고한 바 있으며 자엽 전개 후에 접목한 것에 비해 본엽 1매 전개시에 접목할 경우 활착률이 높았다고 하였다. 이는 본엽 1매 전개시 배축 직경이 다소 굵어 접목 후 접합면이 상대적으로 증가하므로써 접목부위에 형성층이 빨리 형성되고, 양‧수분의 이동 통로가 연결되어 활착률이 증가하였기 때문이라고 하였다. Lee 등(1997b)은 대목의 묘령에 따른 활착률에 관한 보고에서 자엽이 전개하기 전에 채취한 대목보다 전개 후의 대목에서 배축이 다소 경화되지만 뿌리의 생장량이 많아 활착에 유리하다고 하였으며, 대목의 배축 절단위치는 배축의 중간 이상으로 하여 접목하는 것이 활착률이 높다고 보고하였다.

조 등(1995)도 접수의 생육단계를 유묘기와 자엽 전개기로 나누어 수박 접목묘의 생육을 비교하였는데 활착률은 유묘기가 약간 높았지만 초장, 엽생장, 건물중 등의 묘 생육은 자엽 전개기가 양호했다고 하였다. 또한 규격묘의 대량생산에 있어서는 접목 후 활착까지의 노력이 적게 소요되는 유묘기에 접목이 유리하다고 하였다. 그러나 접목을 위한 대목과 접수의 적정 묘령은 Oda 등(1994b)이 주장한 바와 같이 접합면의 증가를 통해 활착률이 증가할 수 있는 시기가 바람직하다고 하였으며 단근한 삽접이 아닌 경우 뿌리가 잘 발달한 시기에 접목할 경우 활착률을 높일 수 있다고 하였다. 



- 6 -

나. 대기 습도


Hartman 등(2002)은 접목 후 세포 분열을 통해 유합 조직이 형성되고 하나의 완전한 식물체로 변화하기 위해서는 대목과 접수의 형성층에 존재하는 유조직 세포(parenchyma cell)로부터 세포 분열이 이루어져 캘러스가 형성되어야 한다고 주장하였다. 그들은 또 유조직 세포들이 부드럽고 얇은 세포벽으로 둘러싸여 있으며, 건조한 공기에 노출될 경우 스스로를 보호할 수 없어 쉽게 건조되고 고사한다고 하였다. 그러므로 접목 후 활착률을 높이기 위해서는 대기습도를 포화상태로 유지하여 절단면이 건조되지 않도록 유조직 세포를 보호해야 한다고 하였다.

Barnett와 Weatherhead(1988)는 식물 세포내의 수분은 세포 신장(cell enlargement)에 필수적이며, 대목과 접수의 유조직 세포가 충분한 수분을 보유할 경우 세포신장이 원활하여 유합조직이 쉽게 형성된다고 하였다. 그러나 그들은 대기습도가 유조직 세포의 함수량에 많은 영향을 미치지만 대목보다 접수에 더 큰 영향을 미쳐 건조조건에 노출된 접수는 세포신장이 이루어지지 않아 유합조직이 형성되지 않고 결국 고사한다고 하였다. Beeson과 Proebsting(1988a, 1988b, 1988c, 1989)도 유합조직 형성과 유조직 세포의 수분함량에 관해 보고하면서 캘러스 형성이 잘 되고 유관속이 연결되기 위해서는 접목 후 대기습도를 높여야 한다고 보고하였다. 그러나 국내에서 발표된 연구결과 중 Kim과 Park(2001)은 활착 단계에서 접수와 대목의 접합이 원활하게 이루어지고 건전한 접목묘를 생산하기 위해서 점차 상대습도를 낮추고, 광량을 서서히 증가시키는 등의 환경관리가 요구된다고 하였다.

최근 접목묘를 생산하는 육묘시설 또는 농가에서는 온실 내부에 벤치를 설치하고 플라스틱 필름 또는 차광 필름을 피복하여 상대습도와 광량을 조절하고 있다. 그러나 접목 후 활착실의 환경 관리가 대부분 관리자의 경험에 의해서 이루어져 정확한 습도와 광량 조절에 많은 어려움을 겪고 있다. 특히 활착률에 많은 영향을 미치는 습도는 단독으로도 많은 영향을 미치지만 활착실의 온도 및 광량과의 상관관계 속에서 접목묘의 활착률에 영향을 미친다.

Nobuoka 등(1996, 1997)은 토마토 접수의 증산에 미치는 상대습도와 광도의


- 7 -

효과, 풍속과 포차의 효과를 구명하였다. 접목묘 개체군의 증발산에 미치는 영향을 정량적으로 구명할 수 있는 방법을 제시하면서, 접목묘 개체군의 증발산 특성에 미치는 환경 요인 중 상대습도가 가장 큰 영향을 미치지만 상대습도는 활착실의 풍속 및 온도에 많은 영향을 받는다고 하였다. Kim 등(2001)도 상대습도가 높은 조건에서는 광도가 증가하여도 잎의 증산량이 증가하지 않지만, 활착실 내부의 풍속이 높아질 경우 증산량은 증가한다고 하였으며, 습도와 다른 환경요인들의 관계를 설명하였다. Nobuoka(1997)는 상대습도가 높은 조건에서 직사광선은 대기온도와 다르게 엽온에 영향을 미치며, 이는 잎 기공으로부터의 증산량에 광과 온도가 상호관계 속에서 영향을 미치기 때문이라고 하였다.


다. 온도


矢吹(1985)는 기온이 상승하거나 접목 후의 일수가 경과함에 따라 접목묘의 증발산 속도가 증가하는데, 이 현상은 쾌청한 기상조건에서 분명하게 나타났고, 기온이 높아지면 포차가 증가한다고 주장하였다. 그는 포차가 증가할 경우 엽내 수분이 감소하고, 이에 따른 기공 개도도 적어지는 반면, 포차가 적어질 경우 증산량이 줄어들면서 엽내 수분의 회복 및 수분이 많아지지만 기공 개도는 커진다고 하였다. 그러므로 포차가 클 경우 기공 개도는 시간에 따라 변화하는 주기운동의 형태를 갖게 된다고 주장하였다.

Nobuoka 등(1996)은 광도가 높을 경우 엽온이 상승하고 결국 기공 개도의 증가를 초래하여 접목묘의 증발산 속도를 증가시키는 원인이 된다고 하였다. 그들은 상대습도와 광합성 유효광량자속을 각각 95% 및 50μmolm- 2‧s- 1로 유지시킨 조건에서 기온을 증가시킬 경우 증발산 속도가 높게 나타났다고 보고하였다. 이는 기공 개도의 증가에 의한 영향이라기보다는 엽온의 상승에 따른 결과이며, 엽온이 상승하면 잎의 수증기압이 높아져 증산속도가 증가한다고 하였다.

Lee 등(2001)은 차광에 따른 온실 내부의 온도변화를 조사하여 보고하였는데 자연환기 또는 무환기 조건에서 85% 차광을 한 온실이 55% 차광한 온실보다 최대 약 4℃, 평균 약 2℃ 정도의 온도 상승 억제효과가 있었으며, 외부 차광은


- 8 -

차광재가 흡수한 열이 온실 내부로 전달되지 않을 뿐만 아니라 천창을 통한 환기 효율이 내부 차광보다 양호하여 온도 상승 억제에 효과적이라고 하였다.

Nagaoka와 Mitui(1991)는 오이 접목묘 생산에서 활착을 위한 최적 환경조건을 설명하면서 접목 당일에는 암흑조건에서 온도를 28℃, 습도는 90%이상 상태로 관리하고, 그 이후에 광도를 높이면서 온도와 습도를 하강시키면 접목 활착이 높아진다고 하였다. Katsumata와 Moriwaki(1971)는 토마토와 오이에서 양분 이동에 미치는 온도 영향을 연구하였는데 30℃에서 25℃ 또는 20℃ 보다 빠르게 양분이 이동하고, 토마토의 접수에서는 25℃에서 20℃보다 양분 이동속도가 빨랐다고 하였다. 또한 Matsuzoe 등(1990, 1993)도 공대 및 가지과 야생종(S. sisymbriifolium과 S. toxicarium) 대목에서 온도를 25℃로 조절한 경우 광합성 산물의 이동속도가 빠르고, 20℃로 온도를 조절한 경우 지상부의 생체중이 가장 무거웠다고 하여 온도조건에 따른 접목묘의 생육 차이에 관해 연구결과를 보고하였다. 정 등(1995)은 수박 접목묘 생산에서 활착률에 미치는 온도조건의 영향을 연구하였으며 접목묘를 자엽제거 후 25℃에서 6일간 생육시킬 경우 생육 및 접목 활착률이 높았다고 보고하였다. 이상과 같이 접목하는 대상 작물 및 연구자에 따라 적정 온도조건에서 차이가 있으며 재배농가에서 활착률을 높이기 위한 온도조건에 관한 정확한 연구결과가 도출되어야 농가에서 활용될 수 있을 것이다.


라. 광조건


정 등(1996)은 토마토 접목묘 생산을 위한 최적 환경조건을 설명하면서 접목 직후 활착실의 온도가 27±1℃, 습도는 포화상태, 광도는 3klx 이상을 유지하고, 접목 12시간 이후부터는 10~12시간 조명을 하면서는 활착실에 4일 정도 두는 것이 활착률이 높다고 하였다. Nagaoka와 Mitui(1991)는 오이 접목묘 생산에서 접목 당일에는 암흑 상태로 유지해야 하지만 2일부터는 광도를 높여야만 활착률이 높다고 하였다. Itagi 등(1992a)은 오이 접목묘 생산에서 활착실내의 광량을 5klx로 조절한 경우 3klx 및 10klx보다 활착률이 높다고 하였다.

Nagaoka와 Tsuji(1990)는 케일에 배추를 접목한 후 활착실의 광량을 5klx,


- 9 -

습도는 약 90% 정도로 조절할 때 활착률이 가장 높았다고 하였다. 또한 접목 후 2일간은 아주 약광 조건에서 상대습도 90% 이상, 접목 후 2~5일에는 3~5klx와 상대습도 90%이상, 접목 후 5~10일에는 5~10klx와 70~90%로 접목묘를 관리하는 것이 활착률 및 묘소질 향상을 위해 바람직하다고 하였다.

이와 같이 광 조건은 접목묘의 활착에 많은 영향을 미친다. 그러나 상기한 문헌들에서는 광이 접목묘의 활착단계에서 기공 개도에 큰 영향을 미치며, 광 조사량이 많을 경우 엽온 상승을 통해 잎의 기공을 열리게 하여 증산량이 증가하고, 이는 접수의 함수량 저하를 통해 활착률 저하의 원인이 된다고 하였다.

플러그묘의 이용을 통한 과채류 유묘 접목법에 관해 설명한 Itagi 등(1990)과 守田(1988) 그리고 자동 접목장치를 개발한 Oda 등(1994a)과 鈴木(1990)는 접목묘의 대량생산을 위한 활착실내의 광 조건을 설명하였다. 그들은 접목의 활착률을 높이기 위해서는 저렴한 자연 광원이 안정적으로 공급되어야 하는데, 광선이 너무 강할 경우 활착실 내부의 기온, 엽온 및 상대습도에 영향을 미친다고 하였다. 특히 강한 광선은 엽온의 상승을 통한 기공 개도를 높이는 결과를 초래하여, 증산량 증가와 접수가 시드는 원인이 되며, 결국 활착률이 저하한다고 보고하였다.

이 외에도 中森(1968), 信岡 등(1994), Itagi 등(1990), 松山 등(1985), 長岡 등(1982)이 접목묘 생산에서 활착실의, 광, 온도, 습도 조건에 관한 연구를 하였다. 특히 信岡 등(1994)과 Nobuoka 등(1996)은 습도조절이 가능한 저면급수용 바트를 활용함으로써 접목묘 생산에서 경비를 줄이기 위한 연구를 하였다. 그들은 바트를 활용하면서 자연광을 조사할 경우 기온은 장치 외부의 기상요인에 의하여 크게 영향을 받고, 강한 광선에 의해 기온과 상대습도가 영향을 받는다고 하였다. 또한 토마토 접목묘의 시들음을 방지하려면 상대습도를 높이고, 대목의 흡수력을 높이는 방법 즉 침지처리를 하여야 되며, 광선 투과를 억제하기 위하여 단열 피복자재를 사용하여 엽온 상승을 억제하고, 엽면 경계층 부근의 수증기 포차 증가를 억제하여 삽수의 시들음을 방지할 수 있다고 하였다.




- 10 -

4. 접목묘의 화아분화에 관여하는 요인


가. 온도


토마토를 비롯한 많은 작물은 육묘기간 중에 화아가 분화하며, 육묘시 도장방지 뿐만 아니라 정상적인 화아분화를 유도하기 위한 환경조건의 관리가 중요하다(최, 1994). 토마토의 경우 제1화방이 형성되는 위치가 총 수확량에 큰 영향을 미치며 이는 접목 후 육묘기 동안의 온도와 광 조건에 영향을 받는다.

Jang 등(1996)은 토마토를 온도가 다른 해발 800m의 고랭지와 평탄지에서 각각 육묘하여 정식한 결과 제1화방의 착과절위는 고랭지 육묘가 평난지 육묘보다 1.3~3절이 낮았다고 보고하였다. 또한 7월 10일 파종한 경우 고랭지 육묘의 상품과율이 평난지 육묘보다 21.9%, 조기상품수량도 15% 정도 많았다고 보고하였다. 

Marius 등(1990)은 토마토에서 절간장이 +DIF(주야간 온도차)에서 - DIF보다 173% 길었고, 일평균 기온이 증가할수록 묘의 충실도(건물중/초장) 지수가 저하되었다고 보고하였다. 또한 제1화방의 착생절위에서 일평균기온이 16℃일 경우 정상적으로 화아가 분화되었으나, 일평균 기온이 높아지면서 제1화방 착생절위도 증가하여 28℃에서는 16℃에 보다 약 4마디가 지연되었다고 하였다. Lim 등(1997)은 육묘과정에서 - DIF 처리로 초장이 억제된 묘라 할지라도 정식후 정상적인 생장반응을 나타냈으며, 제1화방의 착생절위는 일평균 기온(16℃)이 낮을수록 저절위(제9절)가 된다고 하였다. Jeong과 Kim(1999) 및 Jeong 등(1999)은 육묘 중 일평균 기온이 높아질수록 착과절위가 높아지며 야간기온을 낮게 할 때 제2화방의 착과절위가 더 낮아진다고 하였다. 또한 초장, 제1화방과 제2화방은 주간과 야간 온도의 상호작용보다는 일평균 온도의 영향을 더 많이 받았으며, 엽수는 주간과 야간 기온의 영향을 미치지 못했다고 하였다. 

加藤(1964)는 육묘기간의 야간온도가 착과절위의 고저에 큰 영향을 미치는데 야간온도가 낮을수록 호흡에 의한 양분소모가 적어 화아분화를 촉진시키며 착과절위를 낮추는 효과를 발생시킨다고 하였다. Itagi 등(1992b)은 고온기에 토마토를 육묘하면 착과절위가 10.4~12.1절로 높지만 야냉 처리를 하면 1.1~2.3절이 저하된다고 하였다. 온도를 13℃로 처리할 경우 18℃ 처리보다 0.3~0.5절


- 11 -

차이가 났다고 주장하였다. 그들은 저온처리가 생육 억제, 착과절위의 저하, 제1화방까지의 절간장의 단축에 효과적이라고 하였다.

Choi 등(1996)은 냉풍기를 사용하여 육묘 생산중 야간온도를 17~18℃로 내렸고, 이를 통해 착과절위를 2~3절 낮출 수 있었다고 보고하였다. 즉, 일반토마토를 7월 1일 파종하고 자엽 전개기 부터 정식 5일 전까지의 30일 동안 야간을 17~18℃로 조절한 결과 관행육묘보다 육묘기 및 정식 1개월 후의 생육은 저조하였으나 개화 및 수확일은 각각 2일 및 7일 정도 촉진되었다고 보고하였다. 김 등(1999)도 고온기에 폐광의 냉풍을 이용하여 육묘온도를 낮추려고 시도하였는데, 주간 최고온도를 31℃, 야간온도를 17.2℃로 30일간 처리한 경우 관행묘(주간 최고온도 36.5℃, 야간 최저온도 21.3℃)보다 초장 신장이 억제되고, 경경이 굵어지며, 절간장이 작아졌고, 착과절위는 일반토마토가 1.4~2.0, 방울토마토는 1.1~1.9 절위가 낮아져 초기 수량이 많았다고 보고하였다. 김 등(2000b)은 일반토마토 하절기 육묘방법별 비교한 결과 제1화방의 착과절위가 본엽이 8매 전개된 묘를 5엽 위에 잘라 할접한 접목묘가 9.5절이었고, 16.5±0.5℃야냉육묘는 10.5절, 상온육묘는 13.4절로 접목 및 야냉육묘에 의한 단축 효과를 보고하였다.

이상의 연구결과 외에도 Itagi 등(1991), 藤井(1947), 五島와 山下(1964) 및 薺藤와 伊東(1971)도 온도가 착과절위 및 착과수에 영향을 미친다고 보고하였다. 그러나 일반적으로 야간의 저온이 착과절위를 낮추고 착과수를 많게 한다고 알려져 있으나 너무 낮은 저온은 오히려 이상화 및 기형과의 원인이 된다. Calvert (1964), Wittwer와 Teubner(1957), Went(1974), 薺藤와 伊東(1971)는 주간 온도가 24~25℃, 야간온도는 17℃ 정도에서 육묘하는 것이 화아분화 및 착과에 가장 좋은 영향을 미친다고 보고하였다. 五島와 山下(1964)는 야간 온도를 낮춘 상태에서 육묘할 경우 화아분화 과정에서의 식물체내 성분변화가 발생하며, 제1화방 분화 전 식물체내의 총 질소함량 중 가용성 및 단백태 질소에 대한 핵산량의 증가를 통해 화아분화가 촉진된다고 하였다. 藤井(1947), Wittwer와 Teubner(1957)는 야간온도가 낮은 경우에 화아분화 촉진물질의 생성이 많아져 착과수도 증가하게 된다고 보고하였다.

한편 薺藤와 伊東(1971)는 야간 저온이 생장점이나 미전개엽의 활성을 저하


- 12 -

시켜 오옥신, 지베렐린 등 생장물질의 생성을 감소시키고, 자엽이나 전개엽의 활성을 촉진시켜 화성 호르몬의 생성을 많아지는 원인이 된다고 보고하였다. 또한 생성된 화성 호르몬의 분열조직으로의 이행 및 집적을 촉진시켜 화아형성에 특이적인 작용을 가진 단백질을 합성하고, 그 효소 단백질에 의해 세포분열이 일어나서 화아가 형성된다는 화아분화의 작용 기구를 보고하였다.


나. 광 조건


토마토 등 가지과 작물은 접목 직후의 활착단계에서 활착률을 높이기 위해 약광 상태로 환경조건을 관리하는데 이는 절간 신장을 촉진시켜 식물이 도장하는 원인이 된다. 이러한 문제는 하절기뿐만 아니라 동절기의 약광 조건에서도 많이 발생한다(Itagi 등, 1991).


다. 비료, 영양 및 기타 환경조건


토마토는 암모늄태 질소의 영향을 크게 받고 질소비료 과용시 도장할 뿐만 아니라 화아분화가 지연되어 정식 후 과번무 상태가 되며 착과에 어려움이 뒤따른다(Huang 등, 1999). 즉 육묘 중 영양 상태에 따라 육묘기에 1~2화방의 착화절위가 결정되는데, 체내 총 영양분이 많으면서 C/N율의 균형이 잘 이루어진 묘일수록 착과절위가 낮아지는 것으로 알려져 있다(Scott와 George, 1984). 薺藤 등(1963)은 화아분화와 초장, 경엽중 간에는 일정한 경향이 없으나, 경경이 비교적 가늘수록 화아분화가 빠르고 착화절위가 낮아진다고 하였다. Marr와 Jirak(1990)는 플러그묘의 경우 포트묘에 비교해 육묘일수가 짧은 어린 묘를 정식할수록 정식 후 경경이 굵어지고 과번무가 된다고 하였다. 그들은 1‧2화방 착과절위는 포트묘가 플러그묘에 대비하여 1~2절 정도가 낮아졌고, 육묘일수에 따라 큰 차이는 없었으나 육묘일수가 길어질수록 착과절위는 낮아지는 경향이라고 하였으며, Kim 등(1999)은 토마토 프러그 육묘에서의 셀 크기가 작을수록 정식 후 과번무될 가능성이 높고 2화방의 착생부위가 불규칙하게 된다고 하였다. 또한 Fukui 등(1990)은 토마토 플러그묘의 접목 활착률에는 대목의 접목 부위보다 접수의 전개엽수가 크게영향을 준다고 하였다. 즉 대목


- 13 -

에서 자엽부터 접목 부위까지의 전개엽수가 접수에서 전개된 엽수보다 많을 경우 제1화방 착생엽위(절간)이 낮아졌다고 하였다. 또한 대목의 절단 부위에 따라 자엽기부에서의 액아 발생에 영향을 미친다고 하였다.



5. 접목묘 재배에서 시비체계 확립 


접목묘 생산과정에서의 환경조건이 묘를 본포에 정식한 후의 생육에 영향을 미치지만, 주로 본포의 토양 무기염 농도에 의해 식물 생육 및 수량이 큰 영향을 받는다. 최근에는 내병성 증대 외에도 저온 등 불량 환경조건에 적응력이 높은 품종 또는 왕성한 흡비력을 가진 품종을 대목으로 한 접목묘를 생산함으로써 본포 정식 후 염류집적이나 시비 부족 등 불량한 환경조건에서 작물 생육을 우수하게 유지하고 있다(近勝, 1974; 甲田과 萩原, 1978; Lee, 1989; Park과 Chung, 1989; 鈴木, 1990). 따라서 대목의 흡비 특성을 정확하게 반영한 시비체계가 확립되어야 생육 및 수량 증대를 도모할 수 있으며 관련 연구가 시급하다고 할 수 있다. 

토마토 접목 플러그묘를 본포에 정식한 후의 시비체계 확립은 시설하우스내의 토경재배와 수경재배를 구분하여 판단할 수 있다. 황 등(1995)은 방울토마토 생산을 위해 질소 20kg/10a, 인산 200mg‧L- 1, 칼리 0.35cmol‧kg- 1로 시비할 때 상품수량이 많았으며, 시비량이 증가함에 따라 가용성고형물 함량이 증가하였는데 질소 27.4kg/10a, 인산은 502mg‧L- 1, 칼리는 0.99cmol‧kg- 1에서 가장 높았다고 하였다. 임과 박(1999)이 일반토마토의 관비재배와 관련하여 수행한 연구에서 질소는 정식 전 토양 EC 측정치를 기초로 시비해야 하지만 추천시비량을 20% 절감하여 시비할 때 수량이 많았고, 인산은 토양 중 유효인산 농도가 300~500mg‧kg- 1이 되도록, 그리고 칼리는 토양 치환성 칼륨 농도가 0.7cmol‧kg- 1이 되도록 시비량을 조절할 때 수확량이 많았다고 보고하였다. 김 등(2000a)도 토마토 관비재배시 상품수량을 높이기 위한 양액의 적정 비료농도는 정식 후부터 3화방 착과기까지 배양액 EC를 0.9dS‧m- 1, 3화방 착과기 이후부터는 1.2dS‧m- 1이며, 배양액 EC가 높아질수록 가용성고형물 함량이 증가


- 14 -

한다고 하였다. 조 등(1996)은 일반토마토 재배에서 관비량이 많을수록 엽폭이 작아졌고, 시험 후 토양분석 결과 무시비에서 Ca 및 Mg 농도가 높았으며, 질산태와 암모니아태 질소는 관비량이 많을수록 높았다고 하였다. 또한 표준량의 2배로 증비할 경우 수량성이 많았으며, 표준시비량에서 가용성고형물 함량, glucose 및 fructose 함량이 많았다고 하였다.

외국에서 수행된 연구결과로 Adams 등(1973)은 250mg‧L- 1의 질소와 400 mg‧L- 1의 칼리 시비농도가 최고의 토마토 수량 및 고품질 생산에 적합하다고 하였다. Yamada 등(1996)은 토마토 재배를 위해서는 엽병의 질산태 질소농도를 지속적으로 분석하여 적정 무기물 함량을 갖도록 시비량을 조절해야 하며, 시설하우스 내의 연작을 위해서는 토양 EC를 0.2~0.3dS‧m- 1로 유지하는 것이 시비관리 기술의 핵심이라고 하였다. Scholberg 등(2000) 또한 토마토 재배에서 질소 무 시비는 엽면적지수를 60~70%로 낮추고 과실 수량이 적어진 원인이 되었다고 하였다. 그러나 이상과 같이 보고자에 따라 차이가 발생하는 원인은 토마토 묘를 정식한 본포의 토양 조건이 연구자에 따라 달랐기 때문이고 또한 실험 대상인 토마토의 품종이 달라서 발생한 결과라고 판단된다. 

접목 또는 실생 플러그묘를 본포에 정식한 후의 시비농도에 관해 Ohkawa Hayashi(1998)는 촉성 및 반촉성 재배의 3~4화방 개화기(생육초기)에 시비를 시작하고, 생육 초기에 배양액의 질소농도를 100mg‧L- 1로 조절하는 것이 바람직하다고 주장하였다. Ohta 등(1990)은 칼륨 시비가 과실의 산도를 적정 수준으로 유지시키고, 가용성고형물과 전당 함량을 증가시키지만, 과다하게 염화칼리를 시비하면 식물체의 생육을 억제하고 과중과 수량이 감소한다고 하였다. Matsuzoe 등(1991)은 접목 토마토의 흡비 특성에서 대목 종류에 많은 영향을 받아 엽의 무기물 함량이 달라지며, 대목의 특이성과 계절에 따른 흡비력의 차이 등을 고려하여 실용성이 있는 대목이 선택되어야 한다고 주장하였다. 그들은 또 토마토의 접목재배는 상품성 있는 과수를 증가시켰고, 기형과, 생육불량과 및 잿빛곰팡이병의 이병과율을 감소시켰다고 보고하였다. 靑木 등(1979)은 토마토 접목재배의 경우 대목에 따라서 접수의 생육이 달라 종간 잡종인 F1 품종이 다른 대목들 보다 현저하게 생육이 왕성하다고 보고하였고, 甲田과 萩原(1984)은 토마토에서 대목 종류에 따라서 상품과율 및 수량에 차이가 있다


- 15 -

고 하였다.

국내에서도 토마토 접목묘를 본포에 정식한 후 시비량에 따른 생육 결과에 관해 일부 보고가 있었다. 정 등(1996)과 Chung 등(1997)은 대목용 품종 ‘Vulcan’에 접목한 토마토를 재배하면서 질소비료를 10a당 10, 20, 30kg씩 시한 결과 평균과중은 차이가 없었다고 보고하였다. 또한 질소 시비량이 증가할수록 접목재배에서 기형과, 생육불량과 및 잿빛곰팡이병 발생율이 감소하였고, 가용성고형물과 citric acid 함량이 증가한다고 보고하였다. Lee 등(1997a)은 대목 종류에 따른 토마토의 초기생육은 차이가 있었지만, 생육이 진전될수록 차이가 적어졌다고 하였다. 그러나 Lee 등(1997a)과 정 등(1997)은 대목에 따라 생육 및 수량에 차이가 없다고 하였다. 박 등(2003)은 방울토마토 접목재배의 경우 상품수량은 무접목 실생묘보다 많았으나, 가용성고형물 함량은 실생묘에서 높았다고 하였다.

이상과 같이 연구자에 따라 각각 다른 결과가 도출된 원인은 연구자에 따라 토양 조건이 달랐으며, 접목묘 생산에서 대목용 품종이 다르고, 또한 재배 환경이 달랐기 때문이라고 판단된다. 따라서 본 연구에서의 대상 대목용 품종에 대한 시비방법에 관해 연구 결과가 도출되어야 재배농가에서의 시행착오를 줄일 수 있을 것이다.

- 16 -

Ⅲ. 재료 및 방법


1. 활착실 환경조건에 따른 토마토 접목묘 생산


본 실험은 충남 부여군에 위치한 충청남도농업기술원 부여토마토시험장 육묘 플라스틱하우스에서 2000년 9월부터 2002년 1월까지 수행하였다.


가. 피복자재에 따른 활착률 및 묘소질


시험품종은 접수로 방울토마토 ‘꼬꼬’(Takii Seed Co., Japan), 일반토마토 ‘모모타로요크’(Takii Seed Co., Japan), 대목으로 ‘카게무샤’(Takii Seed Co., Japan) 등 3품종을 공시하여 수행하였다. 벤치 접목 활착실에서는 펜타이트 파이프로 소형 터널을 만들고 0.04mm PE필름으로 덮어 밀폐시켰다. PE필름 외측에 총 5종류의 차광막을 설치하여 차광을 통한 단열효과를 유발시켰으며, 차광자재로 30% 차광막, 50% 차광막(두성, 한국), 알루미늄증착필름(aluminized polyester sheet, 차광 54%‧보온 57%; Ludvigsvensson Co., XL15, Sweden), 알루미늄증착필름(aluminized polyester sheet, 차광 64%‧보온 62%; LudvigsvenssonCo., XL16, Sweden), aluminum- coated polyester film(Peerless film, TS 내장용, T 0.12㎜, 차광 90%‧보온 98%; 일본피아레스공업주식회사, 일본)을 사용하였다. 접목 활착실에서는 벤치 육묘상 아래 부분에 접목 1일 전부터 분수호스로 살수하여 습도 및 온도를 조절하였다. 

육묘용 상토는 부농원예용 상토(바이오메디아, 미들, 한국)와 펄라이트(삼손, 입도 1.2~5mm, 한국)를 3:1(v/v)로 혼합하여 사용하였다. 접목 전 생육을 위해 9월 16일에 50공 플러그 트레이에 상토를 충전하고 1차로 종자를 파종하였으며, 10월 11일에 플러그 트레이내의 상토가 젖도록 관수한 다음 유묘의 잎과 줄기가 건조된 후에 접목하였고, 11월 8일에 묘소질을 조사하였다. 2차 파종은 1차 파종과 동일한 플러그 트레이, 상토 및 종자를 사용하여 10월 21일에 하였고, 접목은 11월 23일, 묘소질 조사는 1월 3일에 수행하였다. 

접목은 토마토 대목과 접수의 본잎이 2~3매 되었을 때 핀접으로 하였다. 핀접


- 17 -

방법은 접수의 본엽 아래를 칼로 수평으로 자르고 세라믹핀(직경 0.5㎜, 길이 15㎜, Takii Seed Co., Japan)을 절단면과 직각이 되도록 크기의 1/2정도의 깊이까지 꽂고, 대목의 떡잎부위 지점을 수평으로 잘라 세라믹핀의 나머지 부분이 대목에 꽂히도록 하여 접수와 대목을 연결한 이후 접목 부위가 부러지는 것을 예방하기 위해 접목용 클립으로 고정하였다.

육묘 중 플라스틱하우스의 온도관리는 저온기의 최저기온이 12℃ 이상을 유지하도록 농업용 온풍난방기로 가온하였고, 주간온도는 25~30℃를 목표로 관리하였다. 고온기에는 시설내부의 주간온도가 30℃ 이상 되지 않도록 최대한 환기를 실시하였다. 시험구 배치는 완전임의배치 3반복으로 하였으며 시험재료는 반복별 100주씩을 사용하였다.

접목 활착실의 내부 광도는 조도계(INS Co., DX- 100, Taiwan)로 Lux를 측정하여 광합성 유효광량자속 μmolm- 2‧s- 1로 환산하였고, 온도는 디지털온도기록기(T&D Co., Thermo recorder TR71S, Japan)로 측정하였다. 묘소질의 주요 조사항목은 농촌진흥청 농사시험연구조사기준(1995)에 준하였다.


나. 활착실 종류에 따른 활착률 및 묘소질


시험품종은 접수로 방울토마토 ‘꼬꼬’(Takii Seed Co., Japan), 일반토마토 ‘모모타로요크’(Takii Seed Co., Japan), 대목으로 ‘솔루션’(Takii Seed Co., Japan) 등 3품종을 공사하여 수행하였고, 자체 제작한 벤치와 베드 접목 활착실이 활착률과 묘소질에 미치는 영향을 비교하였다.

벤치 접목 활착실은 “실험 1의 가”와 동일하게 설치하였는데, 접목 1일전부터 벤치 육묘상 아래에 분수호스로 살수하여 습도 및 온도를 조절하였다. 베드 접목 활착실은 육묘상 가장자리를 15㎝ 높이로 두둑을 만들고, 플라스틱필름으로 바닥 멀칭을 하였다. 이후 소형 펌프와 타이머를 사용하여 활착실 바닥에분수호스로 살수함으로써 물 흘러대기를 통해 습도 및 온도를 접목 1일 전부터조절하였다. 벤치 및 베드 활착실은 펜타이트 파이프(대명철강, ø25㎜ 1.5T,한국)로 소형 터널을 설치하고 0.04㎜ PE필름으로 밀폐하였다. PE필름 외측은 30% 차광막, 50% 차광막(두성, 한국), 40g‧m- 2 부직포, 80g‧m- 2 부직포〔(주)도레이


- 18 -

새한, 한국〕, 알루미늄증착부직포(영농산업, 한국), 알루미늄증착필름(aluminized polyester sheet, 차광 54%‧보온 57%; Ludvigsvensson Co., XL15, Sweden), 알루미늄증착필름(Aluminized polyester sheet, 차광 64%‧보온 62%; Ludvigsvensson Co., XL16, Sweden), aluminum- coated polyester film(Peerless film, TS 내장용, T 0.12mm, 차광 64%‧보온 62%; 일본피아레스공업주식회사, 일본) 등 8종류의 각각 다른 필름으로 차광 및 단열을 하였다.

육묘 상토는 부농원예용 상토(바이오메디아, 미들, 한국)와 펄라이트(삼손, 입도 1.2~5mm, 한국)를 3:1(v/v)로 혼합하여 사용하였다. 1차 파종은 8월 27일에 50공 플러그 트레이에 상토를 충전하고 공시한 품종을 파종하였고, 9월 18일에 플러그 트레이내의 상토가 충분히 젖도록 관수한 다음 유묘의 잎과 줄기가 건조된 후에 접목하였으며, 10월 23일에 묘소질을 조사하였다. 2차 파종은 10월 5일에 하였으며, 11월 1일에 접목하고, 12월 11일에 묘소질을 조사하였다. 3차 파종은 11월 8일, 접목은 12월 13일, 묘소질 조사는 1월 24일에 수행하였는데, 2차 및 3차 파종은 1차 파종과 동일한 상토 및 플러그 트레이를 이용하였다. 시험구 배치는 완전임의배치 3반복으로 하였으며 시험재료는 반복별 100주씩을 사용하였다.

접목방법, 활착실의 외부 온도관리, 광량과 온도 측정, 묘소질 조사는 “실험 1의 가”와 동일하였다.



2. 활착실 환경조건에 따른 토마토 접목묘의 소질


차광과 단열을 위한 피복자재 그리고 활착실 종류가 접목묘의 화방 형성에 미치는 영향을 밝히고, 아울러 비정상적인 접목묘의 발생 원인을 구명하고자 본 실험을 수행하였다. 충남 부여군에 위치한 충청남도농업기술원 부여토마토시험장의 연동 플라스틱하우스에서 2002년 8월부터 2003년 1월까지 수행하였다. 부농원예용 상토(바이오메디아, 미들, 한국)와 펄라이트(삼손, 입도 1.2~5mm, 한국)를 3:1(v/v)로 혼합한 후 50공 플러그 트레이에 충전하였으며, 접수로 방울토마토 ‘디저트’(해성종묘사, 한국), 일반토마토 ‘레전드’(해성종묘사, 한국), 대목으로 ‘솔루션’(Takii Seed Co., Japan) 등 3품종을 공시하여 사용하였다.


- 19 -

가. 피복자재와 활착실 종류


접목 활착실의 환경 조절을 위해 벤치 활착실 아래에 접목 1일전부터 분수호스로 살수하여 습도 및 온도를 조절하고, 벤치 활착실 위에는 펜타이트 파이프로소형 터널을 설치하였으며, 0.04mm PE필름으로 밀폐하였다. 이 후 PE필름 외부에 알루미늄증착필름(aluminzed polyester sheet, 차광 64%‧보온 62%; Ludvigsvensson Co., XL16, Sweden) 2겹 또는 aluminum- coated polyester film(Peerless film, TS 내장용, T 0.12mm; 일본피아레스공업주식회사, 일본) 등 2종류의 각각 다른 필름으로 차광 및 단열을 하였다. 베드의 접목 활착실은 육묘상 가장자리를 15cm 높이로 두둑을 만들고, 플라스틱필름으로 바닥 멀칭을 하였으며 소형 펌프와 타이머를 사용하여 활착실 바닥에 분무호스로 살수하였다. 이와 같이 물 흘러대기를 통해 접목 1일 전부터 습도 및 온도를 조절하였으며 벤치 접목 활착실과 동일한 차광자재를 사용하였다.

파종은 8월 2일에, 접목은 맞접으로 8월 27일에 하였고, 묘소질은 9월 15일에 조사하였으며, 9월 16일에 정식을 하였다. 정식시 재식거리는 줄 간격 80cm, 주간 간격 30cm으로 조절하였다. 시험구 배치는 난괴법 3반복으로 하였으며 시험재료는 반복별 20주씩을 사용하였다. 접목묘의 화방형성은 11월 11일에 조사하였고, 플라스틱하우스의 온도관리, 광량과 온도 측정, 묘소질 및 생육 조사는 “실험 1의 가”와 동일하였다.


나. 환기 시기와 지연 접목


토마토 접목묘의 접목부위 발근 및 자엽 액아에서 측지가 형성되는 비정상적인 접목묘의 발생을 구명하고자 수행하였으며, 연구목적을 달성하기 위해 환경 조절을 하였는데 벤치 접목 활착실 아래에 분수호스로 살수하여 습도 및 온도를 접목 1일 전부터 조절하고, 벤치 육묘상 위에 펜타이트 파이프로 소형 터널을 설치하였으며, 0.04mm PE필름 밀폐와 알루미늄증착필름(차광 64%‧보온 62%; LudvigsvenssonCo., XL16, Sweden)으로 차광 및 단열을 하였다. 파종은 9월 6일에, 접목은 9월 27일과 10월 3일 2회에 걸쳐 플러그 트레이내의 상토가 젖도록관수한 다음 유묘의 잎과 줄기가 건조된 후에 하였으며, 접목방법은 맞접으로 


- 20 -

실시하고, 묘소질은 10월 27일에 조사하였다.

플라스틱하우스의 온도관리는 “실험 1의 가”와 동일하였다.



3. 접목묘 재배 시 시비량이 생육, 수량 및 품질에 미치는 영향


본 실험은 충남 부여군에 위치한 충청남도농업기술원 부여토마토시험장 플라스틱하우스에서 2000년 9월부터 2002년 7월까지 수행하였다. 촉성작형에서는 접수로 방울토마토 ‘꼬꼬’(Takii Seed Co., Japan), 일반토마토 ‘모모타로요크’(Takii Seed Co., Japan), 대목으로 ‘카게무샤’(Takii Seed Co., Japan) 등 3품종을, 반촉성과 억제작형에서는 접수로 방울토마토 ‘꼬꼬’(Takii Seed Co., Japan)와 일반토마토 ‘모모타로요크’(Takii Seed Co., Japan), 대목으로 ‘카게무샤’(Takii Seed Co., Japan)와 솔루션(Takii Seed Co., Japan) 등 4품종을 공시하여 수행하였다. 육묘상토는 부농원예용 상토(바이오메디아, 미들, 한국)와 펄라이트(삼손, 입도 1.2~5mm, 한국)를 3:1(v/v)로 혼합한 상토를 50공 플러그 트레이에 충전하였다. 


가. 촉성재배


파종은 28℃의 생장상에서 2일간 치상하여 최아시킨 종자를 9월 16일에 하였다. 접목은 10월 11일에 플러그 트레이내의 상토가 젖도록 관수한 다음 유묘의잎과 줄기가 건조된 후에 핀접(직경 0.5mm, 길이 15mm, Takii Seed Co., Japan)하였다.

정식은 흑색 플라스틱 필름으로 멀칭을 하고 11월 9일에 하였으며, 재식거리는줄 간격 80cm, 주간 간격 30cm으로 조절하였다. 육묘 플라스틱하우스의온도관리는 저온기의 최저기온이 12℃이상으로 유지되도록 농업용 온풍난방기로 가온하였고, 주간온도는 2530℃를 목표로 관리하였으며, 고온기의 시설내부 주간온도는 30℃이상이 되었을 때 최대한 환기를 실시하였다. 시험구 배치는 난괴법 3반복으로 하였으며 시험재료는 반복별 10주씩을 사용하였다.

시비 처리는 표준시비량(N- K2O:20.4- 12.2kg/10a; 농촌진흥청 농업과학기술원,


- 21 -

1999)의 40, 60, 80, 100, 120%로 양을 조절하여 총 5처리를 만들고, 10일 간격으로 15회로 나누어 재배 중 분시하였다. 인산(P2O5)은 전 처리에 표준량(10.4 kg/10a)을 기비로 시용하였다. 상기한 시비에서 N- P2O5- K2O의 시비량은 요소, 황산가리 및 용성인비를 조합하여 조절하였다. 

토양화학성 분석방법에서 pH 및 EC는 1:5(w/w)법을 적용하여 pH meter (TOA HM- 30V, Japan) 및 EC meter(CDM 92, Radiometer Copenhagen Co., Denmark)로 측정하였다. 토양시료는 무기성분 분석을 위하여 105℃에서 항량이 될 때까지 건조하고, 싸이크론 밀로 분쇄하여 0.1mm 체를 통과하도록 분쇄한 후 분석시료로 이용하였다. 건조시료 0.5g을 정량하여 마이크로 웨이브용 용기에 넣고, 증류수 10mL을 가하여 적신 다음, 농질산 5mL를 가하여 잘 혼합하였다. 이후 밀봉하였으며 초단파 마이크로웨이브로 20분간 분해하였다. 상온으로 냉각시킨 후 Whatman No. 6 여과지로 여과하여 정량한다음 T- P, K, Ca, Mg 성분을 Inductively Coupled Plasma Spectrophotometer(ICP, GBC - Integra XMP, Australia)로 분석하였다. 유기물은 Tyurin법으로, 유효인산은 Lancaster법으로 하였다(농촌진흥청, 1995).

과실의 가용성고형물 함량은 굴절당도계(Refractometer, ATAGO PR- 100, 0~ 32%, Japan)로 측정하였다. 과실 경도는 Fruit hardness tester(CAT, FHM- 1, 1kg/cm2, UV형, 원추형, 기부경 12mm, 높이 10mm, Japan)을 사용하여 측정하였다.

방울토마토에서는 7g 이상, 일반토마토에서는 70g 이상의 과실을 상품과로 판단하였으며 총 수확된 과실을 적산하여 상품수량으로 하였다. 방울토마토 7g 미만, 일반토마토 70g 미만인 과일을 소과로 분류하였으며, 기형과 및 이병과 등은 비상품과로 구분하였다. 주요 조항목은 농촌진흥청 농사시험연구조사기준(1995)에 준하였다.


나. 반촉성재배


파종은 28℃의 생장상에서 2일간 치상하여 최아시킨 종자를 1월 11일에 하였다. 접목은 플러그 트레이내의 상토가 젖도록 관수한 다음 유묘의 잎과 줄기


- 22 -

건조된 후에 핀접(직경 0.5mm, 길이 15mm, Takii Seed Co., Japan)으로 2월 6일에 실시하였다.

시비처리는 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40, 60, 80, 100, 120%를 추비로 혼합하여 총 5처리를 만들고, 표준시비량을 적용한 실생묘 재배를 대조로 하여 비교조사 하였다. 추비는 3회에 걸쳐 각각 처리 시비량의 1/15씩 분시하였으며, 인산(P2O5)은 전 처리에 표준시비량(10.4kg/10a)을 기비로 시용하였는데 3요소는 요소, 황산가리 및 용성인비를 조합하여 N, P2O5 및 K2O 성분량을 산출하였다. 시험구 배치는 난괴법 3반복으로 하였으며 시험재료는 반복별 10주씩을 사용하였다.

정식은 기비를 시용한 후 정지한 포장을 흑색 플라스틱 필름으로 멀칭하고 3월 12일에 하였으며, 재식거리는 줄 간격 80㎝, 주간 간격 30㎝로 하였다. 육묘 플라스틱하우스의 온도관리는 저온기의 최저기온이 12℃ 이상으로 유지되도록 농업용 온풍난방기로 가온하였고, 주간온도는 25~30℃를 목표로 관리하였으며, 고온기에는 시설내부의 주간온도가 30℃ 이상이 되었을 때 최대한 환기를 실시하였다.

토양화학성은 농촌진흥청 농사시험연구조사기준(1995)에 준하여 분석하였고, 생육, 수량, 과실의 가용성고형물 함량 및 경도는 “실험 3의 가”와 동일한 방법으로 하였다.


다. 억제재배


파종은 28℃의 생장상에서 2일간 치상하여 최아시킨 종자를 8월 2일에 하였다. 접목은 8월 21일에 플러그 트레이내의 상토가 젖도록 관수한 다음 유묘의 잎과 줄기가 건조된 후에 핀접(직경 0.5mm, 길이 15mm, Takii Seed Co., Japan) 하였다.

시비처리는 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40, 60, 80, 100, 120%인 총 5처리를 만들고, 대조구로 표준시비량을 시비한 실생묘를 두어 비교조사 하였다. 각 처리는 상기한 시비량을 추비로 2회에 걸쳐 각각 처리 시비량의 1/15씩 분시하였으며, 모든 처리에서 인산(P2O5)은 표준시비량(10.4kg/10a)을 기비로 시용하였다. 시비에서 N, P2O5, K2O 시비량은 요소, 황산가리, 용성인비


- 23 -

를 조합하여 조절하였으며, 시험구 배치는 난괴법 3반복으로 하였으며 시험재료는 반복별 10주씩을 사용하였다.

정식은 기비를 시용한 토양을 흑색 플라스틱 필름으로 멀칭하고 9월 15일에 하였다. 재식거리는 줄 간격 80㎝, 주간 간격 30㎝로 하였다. 육묘 플라스틱하우스의 온도관리는 저온기의 최저기온이 12℃ 이상으로 유지되도록 농업용 온풍난방기로 가온하였고, 주간온도는 25~30℃를 목표로 관리하였으며, 고온기에는 시설내부의 주간온도가 30℃ 이상이 되었을 때 최대한 환기를 실시하였다.

토양화학성은 농촌진흥청 농사시험연구조사기준(1995)에 준하여 분석하였고, 생육, 수량, 과실의 가용성고형물 함량 및 경도는 “실험 3의 가”와 동일한 방법으로 하였다.


- 24 -

Ⅳ. 결과 및 고찰


1. 활착실 환경조건에 따른 토마토 접목묘 생산


가. 피복자재에 따른 활착률 및 묘소질


10월 11일에 접목해 치상한 접목 활착실의 기상환경을 10월 15일에 조사한 결과, 차광 피복자재별로 벤치 활착실의 광량 및 온도는 알루미늄증착필름(차광


Table 1. Light intensities and temperatures in propagation facilities of grafted tomato seedlings as influenced by various shading materials.

Treatment

Light intensityz

(μmolm- 2‧s- 1)

Temperature

(℃)

Min.

Max.

Measured on Oct. 15

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

261

243

327


248


64


12.0

12.2

12.3


12.5


12.3


33.2

31.0

30.0


29.4


28.8


Measured on Nov. 29

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

97

69

137


76


48


12.5

12.8

12.0


13.5


13.4


29.6

28.9

29.5


29.1


27.5


zPAR: photosynthetic active radiation, mean of measurement at 1 pm.


- 25 -

54%‧보온 57%) 처리의 광도가 327μmol‧m- 2‧s- 1로 가장 높았고, 최고온도에서는 30% 차광막 처리가 33.2℃로 가장 높았으며, 최저온도도 이 처리에서 12.0℃로 가장 낮았다. aluminum- coated polyester film(차광 90%‧보온 98%) 처리의 광도는 64μmol‧m- 2‧s- 1로 가장 낮았으나, 최고온도가 28.8℃로 단열효과가 가장 높았다(Table 1).

11월 23일에 접목해 치상한 접목 활착실은 차광 피복자재별로 벤치 활착실 내부의 광량 및 온도를 11월 29일에 조사한 결과 알루미늄증착필름(차광 54%‧보온 57%) 처리의 광도가 137μmolm- 2‧s- 1로 가장 높았고, 최고온도는 30% 차광막 처리가 29.6℃로 가장 높았으며, 최저온도는 알루미늄증착필름(차광 54%‧보온 57%) 처리가 12.0℃로 가장 낮았다. aluminum- coated polyester film(차광 90%‧보온 98%) 처리는 광도가 48μmolm- 2‧s- 1로 가장 낮았으며, 최고온도도 27.5℃로 낮아 단열효과가 높았다(Table 1).

Kim과 Park(2001)은 활착 단계에서는 접수와 대목의 접합이 원활하게 이루어지고 건전한 접목묘를 생산하기 위해서 점차 상대습도를 낮추고, 광량을 서서히 증가시키는 등의 환경관리가 요구된다고 하였다. 특히 활착률에 많은 영향을 미치는 습도는 단독으로도 많은 영향을 미치지만 활착실의 온도 및 광량과의 상관관계 속에서 접목묘의 활착률에 영향을 미친다고 하였는데, 본 실험에서는 aluminum- coated polyester film(차광 90%‧보온 98%) 피복이 차광 및 단열 효과가 가장 높고 그 다음으로 알루미늄증착필름이었으며 차광막이 가장 낮았다.

10월 11일 접목해 치상한 접목 활착률은 벤치 활착실에서 차광 피복자재별로 볼 때 방울토마토의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 89%로 가장 높았고, 다음으로 알루미늄증착필름(차광 64%‧보온 62%) 처리가 87%로 차광막 처리보다 높았다. 또한 일반토마토의 알루미늄증착필름(차광 64%‧보온 62%) 처리는 99% 다른 처리보다 높았다(Fig. 1).

11월 23일 접목하였을 경우 접목 활착률은 차광 피복자재별로 벤치 활착실에서 조사한 결과 방울토마토의 30% 차광막 처리가 95%로 가장 높았고, 다음으로 알루미늄증착필름(차광 54%‧보온 57%) 처리가 88%로 다른 처리보다 았다. 일반토마토는 30%, 50%의 차광막 처리가 각각 96%로 aluminum


- 26 -

- coated polyester film과 알루미늄증착필름 처리보다 높았고, 겨울철의 저온 및 광량이 부족한 시기의 접목 활착률은 차광 및 단열이 낮은 30%, 50%의 차광막 처리가 높았다(Fig. 1).

이상의 결과를 종합해 볼 때 고온기의 접목은 차광 및 단열이 높은 aluminum- coated polyester film(차광 90%‧보온 98%), 알루미늄증착필름(차광 64%‧보온 62%) 피복자재 처리가 활착율을 높게 하였다.

Nobuoka 등(1996, 1997)은 접목묘 개체군의 증발산에 미치는 영향에 대해 정량적 방법을 제시하면서, 접목묘 개체군의 증발산 특성에 미치는 환경 요인 중 상대습도가 가장 큰 영향을 미치지만 상대습도는 활착실의 풍속 및 온도에 많은 영향을 받는다고 하였다. 또한 Nobuoka(1997)는 상대습도가 높은 조건에서의 직사광선은 대기온도와 다르게 엽온에 영향을 미치며, 이는 잎 기공으로부터의 증산량에 광과 온도가 상호관계 속에서 영향을 미치기 때문이라고 하였다. Kim 등(2001)은 다른 결과를 보고하였는데 즉 상대습도가 높은 조건에서 광도가 증가하여도 잎의 증산량이 증가하지 않지만 활착실 내부의 풍속이 높을 경우 증산량이 증가한다고 하여 습도와 다른 환경요인들의 관계를 설명하였는데 본 실험은 포화습도 상태에서 차광 및 단열 피복자재를 사용하여 광량과 온도를 조절한 결과 Nobuoka(1997)와 같은 경향으로 접목 활착률에 큰 영향을 미친다고 판단된다.

정 등(1996)은 토마토의 접목 생육 시기가 접수 및 대목 모두 본엽 2~3매가 적당하였으며, 접목 후 활착실의 조건은 온도가 27±1℃, 습도는 포화상태, 광도는 3klx 이상으로 접목 후 12시간 이후부터 10~12시간 조명과 활착실에 4일 정도 두는 것이 가장 활착률이 높았다. 또한 조 등(1995)은 접목 활착 촉진실내의 조건이 온도가 28℃, 습도는 93%, 광량은 3klx, 풍속은 20cm/초로서 3~4일 동안에 유지하는 것이 활착을 촉진시킨다고 하였다.

플러그묘의 이용을 통한 과채류 유묘 접목법에 관해 설명한 Itagi 등(1990)과 守田(1988) 그리고 자동 접목장치를 개발한 Oda 등(1994a)과 鈴木 등(1990)은 접목묘의 대량생산을 위한 활착 환경에서 활착실내의 광 조건을 설명하였는데 접목 활착률을 높이기 위해서는 저렴한 자연 광원이 안정적으로 공급되어야 하지만, 광선이 너무 강할 경우 활착실 내부의 기온, 엽온 및 상대습도에


- 27 -

영향을 미친다고 하였다. 특히 강한 광선은 엽온의 상승을 통한 기공 개도를 높이는 결과를 초래하여 증산량 증가와 접수가 시드는 원인이 되며 결국 활착률이 저하한다고 보고하였는데 본 실험에서도 이 결과와 같은 경향이었다.

10월 11일 접목의 경우 소질에서 방울토마토의 초장은 차광률이 높은 aluminum - coated polyester film(차광 90%‧보온 98%) 처리가 27.4cm로 가장 크게 신장하였고, 알루미늄증착필름(차광 54%‧보온 57%) 처리가 19.2cm로 가장 작게 신장되었다. 30% 차광막 처리는 엽수 7.0매, 엽장 12.4cm, 엽폭 8.4cm, 건물중 0.83g 으로  가장 크고 무거웠다. 그러나 생체중은 알루미늄증착필름(차광 54%‧보온57%) 처리가 주당 6.6g 으로 가장 높았다. 이상의 결과를 종합해 보면 접목 활착률이 높이는 방법이 묘 생산비가적게 소요되므로 단순한 묘소질보다 활착률이 더 중요하다고 판단된다. 일반토마토에서의 엽수‧엽장‧엽폭은 피복자재 처리 간에 일정한 경향이 없었고, 알루미늄증착필름(차광 64%‧보온 62%) 처리는 초장이 29.5cm, 생체중이 주당 6.2g, 건물중 0.73g 으로 가장 왕성하였다. 이상의 결과를 보면 활착률이 99%인 알루미늄증착필름(차광 64%‧보온 62%) 처리가 초장, 생체중 및 건물중이 높았는데 조기에 활착이 됨으로서 생육이 촉진된 것으로 판단된다(Table 2, Fig. 2).

11월 23일 접목하였을 경우 방울토마토의 초장은 알루미늄증착필름(차광 54%‧보온 57%) 처리가 26.1cm로 가장 컸으며, 경경은 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 0.58cm로 가장 굵었다. 엽장과 엽폭은 처리 간에 일정한 경향이 없었다. 생체중과 건물중은 차광률이 낮은 30% 차광막 처리가 각각 주당 6.2g, 0.53g으로 가장 무거웠으며, 알루미늄증착필름(차광 54%‧보온 57%) 처리도 같은 경향이었다. 일반토마토의 초장은 30% 차광막 처리가 27.0cm로 가장 컸으며, 경경은 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 0.48cm로 가장 굵었다. 엽수는 차광률이 작을수록 많았고, 엽장, 생체중 및 건물중은 가장 크고 무거웠다. 

이상의 결과를 종합해 보면 접목 활착률은 고온기에 광량이 많아지면 활착실 온도가 적온보다 높게 되므로, 차광 및 단열이 낮은 피복자재 처리가 높은 피복자재보다 낮았다. 그러므로 고온기에서는 차광 및 단열이 높은 피복자재가 접목 활착률이 높아져서 효과적이라고 판단되었다. 또한 저온 및 광량이 적은 시기


- 28 -

에는 차광과 단열이 낮은 피복자재가 접목 활착률이 높은 것으로 생각되었다(Table 3).


Koko/Kagemusya

Momotaroyork/Kagemusya


Fig. 1. Effects of shading materials during acclimation in bench propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Kagemusya, Momotaroyork/Kagemusya). The date of sowing, grafting and investigation of successful union in first experiment were Sep. 16, Oct. 11, and Nov. 8. Those in second experiment were Oct. 21, Nov. 23 and Jan. 3, respectively 〔S30: shading curtain 30%, S50: shading curtain 50%, A54: aluminized polyester sheet (shading 54% with heat insulation 57%), A64: aluminized polyester sheet (shading 64% with heat insulation 62%), A90: aluminum- coated polyester film (shading 90% with heat insulation 98%). Vertical bars indicate standard error.


- 29 -

Table 2. The growth characteristics of two grafted seedlings (Koko /Kagemusya, Momotaroyork/Kagemusya) as influenced by various shading materials during acclimation in bench propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry 

weight

(g/plant)

Koko/Kagemusya

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film 

(shading 90% with heat insulation 98%)

26.2 aby

23.4 bc

19.2 c 


25.8 b


27.4 a


0.30 a

0.28 ab

0.25 b


0.25 b


0.25 b


7.0 a

6.5 ab

6.2 b


6.4 ab


6.5 ab


12.4 a

12.4 a

10.6 b


11.6 ab


11.8 ab


8.4 a

8.1 ab

7.4 bc


8.5 a


8.4 a


6.2 ab

5.1 b

3.2 cd


6.6 a


4.9 b


0.83 a

0.67 b

0.43 c


0.58 b


0.60 b


Momotaroyork/Kagemusya

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film 

(shading 90% with heat insulation 98%)

24.5 b

25.1 b

24.2 b


29.5 a


23.3 bc


0.47 a

0.49 a

0.45 ab


0.44 ab


0.43 ab


6.6 ab

7.0 a

5.9 bc


6.6 ab


6.2 b


12.4 b

15.0 a

14.4 ab


14.2 ab


14.3 ab


8.4 b

8.9 ab

9.5 a


9.2 ab


9.4 a


6.1 a

5.6 b

5.3 bc


6.2 a


5.6 b


0.59 bc

0.72 a

0.69 ab


0.73 a


0.71 ab


zThe date of sowing, grafting and investigation of growth characteristics were Sep. 16, Oct. 11, and Nov. 8, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.








- 30 -

 
 

 S30     S50      A54              A64     A90    Control

Koko/Kagemusya



 
 

S30     S50        A54            A64     A90    Control

Momotaroyork/Kagemusya


Fig. 2. Comparison of grafted tomato seedlings (Koko/Kagemusya, Momotaroyork /Kagemusya) on Nov. 8 as influenced various by shading materials during acclimation in bench propagation facilities 〔S30: shading curtain 30%, S50: shading curtain 50%, A54: aluminized polyester sheet (shading 54% with heat insulation 57%), A64: aluminized polyester sheet (shading 64% with heat insulation 62%), A90: aluminum - coated polyester film (shading 90% with heat insulation 98%) and Control: commercial propagation facility (shading curtain 80%)〕.


- 31 -

Table 3. The growth characteristics of two grafted seedlings (Koko /Kagemusya, Momotaroyork/Kagemusya) as influenced by various shading materials during acclimation in bench propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry 

weight

(g/plant)

Koko/Kagemusya

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film 

(shading 90% with heat insulation 98%)

26.1 aby

25.3 b

26.9 a


23.7 bc


19.3 c


0.42 b

0.42 b

0.42 b


0.44 b


0.58 a


9.0 a

8.8 a

9.1 a


9.2 a


8.9 a


12.9 b

12.6 b

12.4 bc


15.0 a


12.2 bc


9.1 a

8.6 ab

8.6 ab


8.3 b


8.8 a


6.17 a

5.16 b

5.80 a


4.88 bc


4.59 c


0.53 a

0.43 b

0.51 a


0.51 a


0.44 b


Momotaroyork/Kagemusya

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film 

(shading 90% with heat insulation 98%)

27.0 a

24.8 ab

26.0 a


25.2 ab


20.6 b


0.46 ab

0.45 ab

0.44 ab


0.44 ab


0.48 a


9.0 a

9.0 a

9.2 a


8.4 b


8.6 b


15.5 a

14.6 ab

14.5 ab


11.2 b


14.4 ab


10.6 a

10.5 a

10.5 a


10.1 a


10.2 a


7.33 a

6.68 b

6.30 b


6.41 b


6.12 b


0.71 a

0.61 b

0.67 ab


0.63 b


0.64 b


zThe date of sowing, grafting and investigation of growth characteristics were Oct. 21, Nov. 23, and Jan. 3, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.








- 32 -

나. 활착실 종류에 따른 활착률 및 묘소질


2001년 9월 21일 활착실과 차광 피복자재를 달리해 처리한 접목 활착실내 광도는 40g‧m- 2부직포 처리가 745μmolm- 2‧s- 1로 가장 높았고, aluminum- coated polyester film(차광 90%‧보온 98%)이 83μmolm- 2‧s- 1로 가장 낮았다. 접목 활착실 종류별로 볼 때 벤치 활착실의 최저온도는 베드 활착실보다 0.4~1.5℃, 최고온도는 1.4~3.0℃가 높았다. 차광자재 중에서 aluminum- coated polyester film(차광 90%‧보온 98%)으로 차광한 접목 활착실의 최고온도는 베드가 벤치보다 3.0℃ 차이로 가장 낮았다. 베드 활착실에서의 최고온도는 벤치보다 낮은 원인은 벤치 활착실의 아래에 분수호스로 살수한 것보다 베드 활착실 바닥에 지하수 흘러대기를 함으로 온도하강 효과가 크게 나타난 것으로 생각되었다.

11월 5일 조사 결과, 접목 활착실내 광도는 차광 피복자재 중 40g‧m- 2 부직포  544μmolm- 2‧s- 1로 가장 높았고, aluminum- coated polyester film(차광 90%‧보온 98%)이 46μmolm- 2‧s- 1로 가장 낮았다. 접목 활착실의 최저온도는 벤치 활착실이 베드 활착실보다 0.1~0.6℃, 최고온도는 0.20.7℃가 높았다.

12월 18일 조사 결과, 차광 피복자재별 접목 활착실내 광도는 40g‧m- 2 부직포 처리가 177μmolm- 2‧s- 1로 가장 높았고, aluminum- coated polyester film(차광 90%‧보온 98%)이 21μmolm- 2‧s- 1로 가장 낮았다. 접목 활착실의 최저온도는 벤치 활착실이 베드 활착실보다 0.1~0.5℃, 최고온도는 0.2~0.9℃가 높았다. 피복자재 중 30% 차광막에서의 접목 활착실 최고온도는 벤치 활착실이 베드 활착실보다 0.9℃ 차이로 가장 높았다. 저온기에서의 벤치 활착실은 벤치 아래에 분수호스로 살수, 베드 활착실의 바닥에 지하수흘러대기를 함으로 활착실의 냉방효과보다 포화습도를 유지하는데 큰 효과가 있었다(Table 4).

Nobuoka 등(1992)은 상면에 플라스틱필름을 멀칭하고 저면 급수용 바트에 접목묘의 프러그 트레이를 직접 올려놓고 타이머 장치를 하여 바트에 동일하게 급수되도록 하였고, 접목 후는 습도유지와 차광을 하기 위하여 투명 플라스틱필름을 2겹으로 피복하는 저면급수에 의한 간이 접목묘 생산 시스템을 개발 하였다. 또한 저면 급수한 접목묘는 시들음 정도가 적으며 활착이 양호하고, 수한 자재나 장치가 필요하지 않으며 활착 후에도 시설을 육묘상으로 사용할


- 33 -

Table 4. Light intensities and temperatures in propagation facilities of grafted tomato seedlings as influenced by various shading materials.

Treatment

Light intensityz

(μmolm- 2‧s- 1)

Temperature(℃)

Min.

Max.

Bench

Bed

Bench

Bed

Measured on Sep. 21

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

335

312

745

663

261

420


319


83


12.8

12.4

11.7

11.6

11.0

11.9


12.4


11.9


13.2

12.9

13.1

13.0

12.5

12.9


13.2


12.5


34.9

31.4

34.5

32.9

30.8

32.0


31.4


31.3


32.9

30.0

32.3

30.2

28.9

30.0


29.6


28.3


Measured on Nov. 5

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

186

173

544

368

145

233


177


46


12.5

12.5

13.5

12.7

13.4

13.8


13.4


13.5


12.9

13.1

14.0

13.3

13.8

14.2


13.8


13.6


30.9

30.6

32.9

30.8

31.3

32.8


32.3


25.8


30.4

29.9

32.2

30.2

30.7

32.3


32.1


25.6


Measured on Dec. 18

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

91

70

179

170

85

96


82


21


12.4

12.5

13.0

12.8

13.1

13.2


13.0


13.1


12.0

12.2

12.6

12.7

12.8

13.0


12.8


12.6


29.5

29.3

30.2

29.4

29.8

31.1


30.0


25.3


28.6

28.5

29.7

29.0

29.1

30.5


29.6


25.1


zPAR: photosynthetic active radiation, mean of measurement at 1 pm.


- 34 -

수 있어 농가에서 용이하게 활용할 수 있다. 증산억제제 처리에 의한 접목묘의시들음 방지효과는 높은 습도조건에서 확실하지 않으나 낮은 습도에서는 효과가 있었다고 보고하였다.

信岡 등(1994)과 Nobuoka 등(1996)은 습도조절이 가능한 저면급수용 바트를 활용함으로써 접목묘 생산에서 경비를 줄이기 위한 연구를 하였다. 그들은 바트를 활용하면서 자연광을 조사할 경우 기온은 장치 외부의 기상요인에 의하여 크게 영향을 받고, 강한 광선에 의해 기온과 상대습도가 영향을 받는다고 하였다. 또한 토마토 접목묘의 시들음을 방지하려면 상대습도를 높이고, 대목의 흡수력을 높이는 방법 즉, 침지처리를 해야 되며, 광선 투과를 억제하기 위한 단열 피복자재를 사용하여 엽온 상승을 억제하고, 엽면 경계층 부근의 수증기포차 증가를 억제하여 삽수의 시들음을 방지할 수 있다고 하였다.

Kim과 Park(2001)은 접목묘의 활착을 높이려면 활착단계에서 접수의 시들음을 막아야 하고, 접목묘의 과도한 증산은 접수의 시들음을 심화시킨다. 그러므로 접목묘의 증산을 억제하면서 활착을 높이려면 접목 직후 상대습도를 높게 유지하여 묘의 시들음을 방지하여야 한다. 활착 단계에서는 접수와 대목의 접합이 원활하게 이루어지고 건전한 접목묘를 생산하기 위해서는 점차 상대습도를 낮추고, 광량은 서서히 증가시키는 등의 환경관리가 요구된다. 현재 접목묘를 생산하는 육묘시설 또는 농가에서는 온실내부에서 플라스틱필름 또는 차광용 필름을 이용하여 상대습도와 광량을 조절하고 있으나, 환경 요소의 관리가 대부분 관리자의 경험에 의해서 이루어져 정확한 습도와 광량 조절에 많은 어려움을 겪고 있다. 또한 접목묘의 활착은 대부분 자연광 조건하에서 이루어지므로, 접목묘의 활착 및 묘소질이 외부환경의 영향을 쉽게 받기 때문에 활착환경의 효과적인 제어가 미흡한 실정이라고 하였으나, 본 실험에서는 고온기의 경우 베드 활착실에 차광 및 단열 효과가 높은 피복자재인 aluminum- coated polyester film(차광 90%‧보온 98%) 및 알루미늄 증착필름을 사용하고, 지하수를 이용하여 분수호스로 활착실 바닥에 물 흘러대기를 하였을 때 온도 및 습도 제어가 가능한 결과를 얻었고, 프러그 육묘장이나 재배농업인이 실용화가 가능할 것으로 판단된다.



- 35 -

Koko/Solution
 

Momotaroyork/Solution


Fig. 3. Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Solution, Momotaroyork/Solution). The date of sowing, grafting and investigation of successful union were Aug.  27, Sep. 18, and Oct. 23, respectively 〔S30: shading curtain 30%, S50: shading curtain 50%, N40: non- woven fabric 40 g·m­², N80: non- woven fabric 80 g·m­2, AN: aluminum- coated non- woven fabric film, A54: aluminized polyester sheet (shading 54% with heat insulation 57%), A64: aluminized polyester sheet (shading 64% with heat insulation 62%), A90: aluminum- coated polyester film (shading 90% with heat insulation 98%)〕. Vertical bars indicate standard error.


- 36 -

9월 18일 방울토마토를 접목한 후 벤치 활착실에서 치상시켜 조사한 접목 활착률은 차광 피복자재별로 볼 때 알루미늄증착필름(차광 54%‧보온 57%) 처리가 55%로 다른 처리보다 높았으며, 베드 활착실에서는 80g‧m- 2 부직포 처리가 66%로 다른 처리보다 높았다. 일반토마토의 접목 활착률은 벤치에서 알루미늄증착필름(차광 54%‧보온 57%)처리가 79%로 다른 처리보다 높았으며, 고온기의 접목 활착률은 차광 및단열이 높은 알루미늄증착필름(차광 54%‧보온 57%) 처리가 우수한 것으로 조사되었다. 베드 활착실에서는 알루미늄증착부직포 처리가 76%로 가장 높았다(Fig. 3).

9월 18일 접목한 방울토마토의 묘소질은 벤치 활착실에서 차광 피복자재별로 볼 때 알루미늄증착필름(차광 54%‧보온 57%) 처리가 생체중이 주당 7.78g, 건물중 1.03g, 초장 26.9cm로 가장 우수하였다. 베드 활착실에서의 묘소질은 접목 활착률이 낮은 처리가 빈 공간이 많아서 생체중과 건물중이 무겁고, 초장이 큰 것으로 생각되었다(Table 5). 일반토마토의 묘소질은 벤치 활착실에서 알루미늄증착필름(차광 54%‧보온 57%) 처리가 생체중이 주당 8.48g, 건물중 1.08g, 초장 25.8cm로 다른 처리보다 가장 우수하였다. 베드 활착실에서도 접목 활착률이 낮은 처리가 빈 공간이 많아서 생체중과 건물중이 무겁고, 초장이 큰 것으로 생각되었다. 이상의 결과를 볼 때 고온기인 9월 18일에 접목할 경우 차광 및 단열이 높은 자재를 2겹으로 사용해야 활착률 100%에 근접한 결과를 얻을 수 있을 것으로 생각된다. 특히 베드 활착실에서 차광 및 단열 효과가 높은 자재를 활용하면 효율적인 접목묘 활착방법이라고 생각된다(Table 6).

嶋田(1980)는 유관속의 연결이 접목 친화성 뿐만 아니라 온도, 습도 등과 같은환경조건의 영향을 크게 받는다고 하였으며, Whitwell과 Crofts(1972),  Dufault와Waters(1985)은 소질이 육묘 중 온도, 습도, 광, 탄산가스 농도, 바람 등의 기상요인, 육묘 상토의 물리성과 화학성 등의 토양 환경요인 그리고 관수, 시비, 병해충방제, 육묘기간 등의 재배적 요인에 의해서 영향을 받는다고 하였고, 외부적 요인이 식물체에 질적 변화를 일으켜 묘소질의 차이를 가져오게 된다고 하였는데 본 실험에서는 고온기에 접목 활착률이 높은 활착실과 피복자재 처리가 차광 및 단열 효과가 높아서 광량이 적고 최고온도가 낮으므로 묘소질이 양호하였으며, 차광 및 단열이 낮은 처리는 생육이 부진하였는데 기존의 연구결과와 같은 경향이었다.


- 37 -

Table 5. The growth characteristics of two grafted tomato seedlings (Koko /Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

16.2 dy

21.7 ab

18.5 cd

23.7 b

25.9 ab

26.9 a


25.6 ab


24.2 b


0.42 b

0.48 ab

0.51 a

0.50 a

0.50 a

0.47 ab


0.47 ab


0.44 b


7.7 b

8.4 ab

7.6 b

8.3 ab

8.8 a

8.7 a


8.7 a


8.4 ab


9.5 c

10.9 b

10.5 b

11.7 ab

11.9 ab

12.3 a


12.0 a


12.2 a


6.3 c

7.4 b

7.5 b

8.2 a

8.0 a

7.9 ab


7.9 ab


8.2 a


4.14 d

6.36 bc

5.60 c

6.84 b

7.63 a

7.78 a


7.13 ab


7.40 ab


0.60 c

0.87 b

0.81 b

0.98 ab

1.08 a

1.03 a


1.04 a


1.00 ab


Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

24.7 a

24.1 ab

19.0 c

20.9 b

25.0 a

19.0 c


22.6 b


25.3 a


0.51 ab

0.54 a

0.57 a

0.49 ab

0.45 b

0.47 b


0.55 a


0.46 b


8.7 a

8.6 a

7.4 b

8.7 a

8.6 a

7.5 b


8.0 ab


8.8 a


13.2 b

13.6 b

13.4 b

11.8 bc

11.7 bc

10.5 c


15.6 a


13.1 b


9.4 b

9.4 b

9.4 b

8.5 bc

8.0 c

8.6 bc


10.5 a


9.0 b


8.61 b

8.40 b

6.84 c

7.24 bc

7.07 c

6.09 d


9.77 a


7.26 bc


1.20 a

1.12 ab

0.99 b

0.95 b

0.93 b

0.93 b


1.32 a


0.99 b


zThe date of sowing, grafting and investigation of growth characteristics were Aug. 27, Sep. 18, and Oct. 23, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.





- 38 -

Table 6. The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry 

weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

19.2 cy

21.3 bc

19.7 c

21.6 bc

23.4 b

25.8 a


22.2 b


19.2 c


0.46 a

0.49 a

0.46 ab

0.48 a

0.46 ab

0.49 a


0.46 ab


0.43 b


8.1 a

8.0 a

8.1 a

7.9 ab

7.7 b

8.1 a


8.0 a


7.6 b


13.3 a

12.8 ab

12.3 b

13.3 a

13.5 a

12.3 b


13.9 a


13.1 ab


9.6 a

8.7 ab

8.4 b

9.6 a

9.7 a

8.5 b


9.6 a


9.7 a


7.61 b

7.71 b

6.78 bc

7.43 b

7.65 b

8.48 a


7.33 b


6.67 bc


0.99 ab

1.06 a

0.94 b

1.11 a

0.99 ab

1.08 a


1.01 ab


0.92 b


Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

24.5 b

23.5 b

20.7 c

18.5 d

25.8 ab

22.5 bc


27.0 a


24.5 b


0.51 b

0.55 a

0.55 a

0.51 b

0.52 b

0.53 ab


0.55 a


0.52 b


8.8 b

9.4 a

8.6 b

8.8 b

8.5 b

8.8 ab


9.1 a


9.0 ab


14.2 ab

14.6 a

13.7 b

12.3 c

14.1 ab

14.0 ab


14.9 a


15.0 b


9.9 a

10.3 a

9.6 ab

9.2 b

9.7 ab

9.5 ab


10.3 a


10.2 a


9.51 ab

10.59 a

8.10 b

7.19 c

9.23 ab

8.48 b


10.10 a


10.39 a


1.31 ab

1.40 a

0.99 b

0.85 c

1.18 b

1.05 b


1.25 ab


1.27 ab


zThe date of sowing, grafting and investigation of growth characteristics were Aug. 27, Sep. 18, and Oct. 23, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.





- 39 -

11월 1일에 접목한 방울토마토의 접목 활착률은 벤치 활착실에서 차광 피복자재별로 볼 때 80g‧m- 2 부직포 처리가 70%로 다른 처리보다 높았다. 베드 활착실에서는 50% 차광막 처리가 100%로 다른 처리에 비해 높았으며, 베드 활착실 처리가 벤치 활착실보다 높았다. 일반토마토의 접목 활착률은 벤치 활착실에서 알루미늄증착필름(차광 54%‧보온 57%)과 80g‧m- 2 부직포 처리가 96%로 다른 처리보다 높았다. 또한 베드 활착실에서는 80g‧m- 2 부직포와 알루미늄증착필름(차광 64%‧보온 62%) 처리가 100%로 다른 처리보다 가장 높았다(Fig. 4). 이상의 결과를 볼 때 접목 활착률은 대목과 접수 품종의 묘소질이 큰 영향을 미치는 것으로 생각된다.

11월 1일에 방울토마토 접목한 벤치 활착실에서의 초장은 알루미늄증착필름(차광 64%‧보온 62%) 처리가 25.4cm, 80g‧m- 2 부직포 처리는 25.3cm로 가장 컸다. 경경은 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 0.35cm로 빈약하였으며, 엽수는 50% 차광막, 80g‧m- 2 부직포, 알루미늄증착필름(차광 54%‧보온 57%, 차광 64%‧보온 62%)의 처리가 비교적 많았다. 엽장과 엽폭은 30%와 50% 차광막, aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 비교적 큰 편이었으며, 생체중과 건물중은 일정한 경향이 없었으나 활착률은 처리 간에 차이가 있었다. 베드 활착실에서의 초장은 알루미늄증착필름(차광 64%‧보온 62%) 처리가 27.8cm로 가장 왕성하였으며, 경경은 처리 간에 일정한 경향이 없었다. 엽장과 엽폭은 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 각각 12.7cm, 8.8cm로 큰 편이었다. 생체중과 건물중은 40g‧m- 2 부직포, 80g‧m- 2 부직포 및 알루미늄증착부직포 처리가 모두 무거웠으며 통계적으로 유의한 차이가 있었고, 접목 활착률이 100%인 50% 차광막 처리가 가벼운 것은 묘 밀도가 높은 관계로 판단된다(Table 7).







- 40 -

 
Koko/Solution
 
Momotaroyork/Solution


Fig. 4. Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of two different tomatoes (Koko/Solution, Momotaroyork/Solution). The date of sowing, grafting and investigation of successful union were Oct 5, Nov. 1, and Dec. 11, respectively 〔S30: shading curtain 30%, S50: shading curtain 50%, N40: non- woven fabric 40 g·m­², N80: non- woven fabric 80 g·m­2, AN: aluminum- coated non- woven fabric  film, A54: aluminized polyester sheet (shading 54% with heat insulation  57%), A64: aluminized polyester sheet (shading 64% with heat insulation 62%), A90: aluminum- coated polyester film (shading 90% with heat insulation 98%)〕. Vertical bars indicate standard error.


- 41 -

11월 1일 접목한 일반토마토에서의 묘소질은 벤치 활착실에서 차광 피복자재별로 볼 때 초장은 50% 차광막 처리가 22.1cm로 가장 생육이 촉진되었으며, 경경은 50% 차광막 처리가 0.39cm, 알루미늄증착부직포 처리가 0.38cm로 비슷한 굵기였다. 엽수는 30%, 50% 차광막 처리가 7.9매로 비교적 많았으며 엽장‧엽폭‧생체중‧건물중은 처리 간에 차이는 있었으나 일정한 경향이 없었다.

베드 활착실에서 초장은 80g‧m- 2 부직포 처리가 26.1cm로 가장 컸으며, 경경은 30% 차광막, 40g‧m- 2 80g‧m- 2 부직포 처리가 비교적 굵었다. 엽수는 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 8.6매로 가장 많았으며, 엽장‧생체중‧건물중은 80g‧m- 2 부직포 처리가 각각 15.4cm, 7.61g, 0.71g으로 묘소질이 양호하였고, 접목 활착률도 100%로 묘 밀도가 높은 상태에서 가장 우수한 처리라고 판단되었다(Table 8).

이상의 결과를 종합해 보면 베드 활착실은 벤치보다 접목 활착률이 높고, 묘소질은 초장 등 기타 생육이 왕성하였다. 그래서 접목 활착률이 높기 때문에 조기에 생육촉진이 되어 묘소질이 향상된 것으로 생각된다.

















- 42 -

Table 7. The growth characteristics of two grafted tomato seedlings (Koko/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry 

weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

21.7 by

24.3 ab

19.8 bc

25.3 a

21.9 b

23.6 ab


25.4 a


20.1 bc


0.36 ab

0.37 ab

0.39 a

0.38 a

0.38 a

0.38 a


0.40 a


0.35 b


9.3 ab

9.6 a

8.9 ab

9.6 a

8.9 ab

9.7 a


10.1 a


9.3 b


9.6 a

10.2 a

8.8 b

9.7 a

9.2 ab

9.4 ab


9.8 a


9.8 a


7.0 a

6.9 a

6.3 ab

6.4 ab

5.8 b

6.1 ab


6.1 ab


6.6 a


4.19 ab

4.55 a

3.66 b

4.36 a

3.65 b

3.67 b


3.86 b


3.77 b


0.53 ab

0.58 a

0.48 b

0.56 a

0.46 b

0.44 b


0.48 b


0.46 b


Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

19.9 c

21.1 c

25.7 b

26.5 ab

25.9 b


24.6 bc


27.8 a


26.3 ab

0.37 b

0.39 a

0.36 b

0.39 a

0.40 a


0.40 a


0.40 a


0.36 b

8.6 a

8.7 a

8.9 a

9.1 a

9.0 a


9.0 a


8.7 a


9.0 a

10.2 b

10.7 b

11.5 ab

11.7 ab

11.8 ab


11.3 ab


11.5 ab


12.7 a

7.2 c

7.5 bc

7.9 b

7.6 bc

7.8 bc


8.0 b


8.0 b


8.8 a

4.30 c

4.95 b

5.95 a

6.20 a

6.00 a


5.45 ab


5.40 ab


6.06 a

0.60 ab

0.53 b

0.64 a

0.63 a

0.65 a


0.61 ab


0.59 ab


0.61 ab

zThe date of sowing, grafting and investigation of growth characteristics were Oct. 5, Nov. 1, and Dec. 11, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.






- 43 -

Table 8. The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

21.1 aby

22.1 a

17.0 c

18.9 b

18.5 b

19.3 b


21.3 ab


19.5 b


0.37 ab

0.39 a

0.32 b

0.37 ab

0.38 a

0.36 ab


0.36 ab


0.37 ab


7.9 a

7.9 a

7.4 ab

7.1 b

7.3 ab

7.5 ab


7.4 ab


7.3 ab


12.3 a

12.5 a

11.8 ab

10.8 b

12.6 a

12.2 a


12.3 a


11.4 ab


8.0 a

8.0 a

7.5 ab

7.0 b

7.9 a

7.4 ab


7.8 a


7.4 ab


4.78 a

4.95 a

3.75 b

4.26 ab

4.17 ab

4.25 ab


4.11 ab


4.65 a


0.50 ab

0.55 a

0.48 ab

0.48 ab

0.43 b

0.52 a


0.52 a


0.42 b


Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

17.4 cd

18.4 c

21.2 b

26.1 a

24.6 ab

24.1 ab


23.1 ab


23.7 ab


0.43 a

0.40 ab

0.45 a

0.44 a

0.38 b

0.41 ab


0.39 ab


0.38 b


7.5 b

7.7 b

7.6 b

7.7 b

7.9 b

7.9 b


7.7 b


8.6 a


13.3 b

13.2 b

14.0 ab

15.4 a

14.8 a

15.1 a


14.1 ab


14.6 a


8.6 b

8.5 b

8.9 b

9.2 ab

9.8 a

9.2 ab


8.6 b


8.8 b


6.02 b

5.76 bc

6.69 b

7.61 a

7.16 ab

5.62 c


6.42 b


6.02 b


0.70 a

0.72 a

0.67 ab

0.71 a

0.69 a

0.64 b


0.63 b


0.63 b


zThe date of sowing, grafting and investigation of growth characteristics were Oct. 5, Nov. 1, and Dec. 11, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.





- 44 -

12월 13일에 방울토마토를 접목한 접목묘의 활착률은 벤치 활착실에서 50% 차광막 처리가 100%, 알루미늄증착부직포 처리는 98%로 다른 처리보다 높았다. 또한 베드 활착실에서는 알루미늄증착필름(차광 64%‧보온62%) 처리가 98%로 다른 처리보다 높았다. 일반토마토의 경우 벤치 활착실에서는 50% 차광막, 40g‧m- 2 부직포, 알루미늄증착필름(차광 54%‧보온 57%, 차광 64%‧보온 62%) 처리가 100%로 다른 처리보다 높았다. 또한 베드 활착실에서는 알루미늄증착필름(차광 64%‧보온62%) 처리가 100%로 다른 처리보다 높았다(Fig. 5).

방울토마토 접목묘의 초장은 벤치 활착실에서 알루미늄증착필름(차광 64%‧보온 62%) 처리가 28.3cm로 가장 크고, 경경은 80g‧m- 2 부직포와 50% 차광막 처리가 각각 0.42cm, 0.40cm로 비슷한 경향이며 가장 굵었다. 엽수‧엽장‧엽폭은 피복자재 처리 간에 일정한 경향이 없었다. 또한 베드 활착실에서의 초장은 80g‧m- 2 부직포 처리가 32.0cm, 알루미늄증착필름(차광 64%‧보온 62%) 처리가 31.4cm로 컸다. 80g‧m- 2 부직포 처리는 초장 등 묘소질 전체에서 높은 경향이었으나 접목 활착률이 92%로 약간 낮았다(Table 9).

일반토마토 접목묘의 경우 벤치 활착실에서의 초장은 40g‧m- 2 부직포와 50% 차광막 처리가 각각 25.1cm, 25.0cm로 가장 크게 생육하였으며, 경경은 접목 활착률이 100%로 높은 50% 차광막, 40g‧m- 2 부직포, 알루미늄증착필름(차광 54%‧보온 57%, 차광 64%‧보온 62%) 처리가 다른 처리보다 굵었다. 엽수‧엽장‧엽폭은 각 처리 간에 일정한 경향이 없었다. 생체중과 건물중은 40g‧m- 2 부직포 처리가 각각 주당 6.10g, 0.74g으로 접목 활착률이 100%인 처리중에서 가장 무거웠다. 베드 활착실에서의 초장은 알루미늄증착필름(차광 54%‧보온 57%)과 알루미늄증착부직포 처리가 각각 24.9cm, 23.7cm로 가장 컸다. 경경‧엽장‧엽폭은 처리 간에 차이가 없었으며, 알루미늄증착부직포와 알루미늄증착필름(차광 54%‧보온 57%) 처리는 각각 초장 등 묘소질을 나타내는 변량에서 우수한 성적을 보였다. 접목 활착률이 100%인 알루미늄증착필름(차광 64%‧보온 62%) 처리는 초장, 생체중 및 건물중이 낮은 경향이었다(Table 10).



- 45 -

 
Koko/Solution


 

Momotaroyork/Solution


Fig. 5. Effects of shading materials during acclimation in bench or bed propagation facilities on the rate of successful grafted union of twodifferent tomatoes (Koko/Solution, Momotaroyork/Solution). The date of sowing, grafting and investigation of successful union were Nov. 8, Dec. 13, and Jan. 24, respectively 〔S30: shading curtain 30%, S50: shading curtain 50%, N40: non- woven fabric 40 g·m­², N80: non- woven fabric 80 g·m­2, AN: aluminum- coated non- woven fabricfilm, A54: aluminized polyester sheet (shading 54% with heat insulation 57%), A64: aluminized polyester sheet (shading 64% with heat insulation 62%), A90: aluminum- coated polyester film (shading 90% with heat insulation 98%)〕. Vertical bars indicate standard error.


- 46 -

Table 9. The growth characteristics of two grafted tomato seedlings (Koko/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry 

weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

24.5 by

25.2 b

25.3 b

24.4 b

25.2 b


28.3 a


26.2 ab


21.9 c

0.37 ab

0.40 a

0.39 ab

0.42 a

0.37 ab


0.39 ab


0.37 ab


0.29 b

9.2 ab

8.4 b

9.5 a

9.4 a

9.5 a


9.4 a


9.2 ab


7.7 c

11.0 a

10.6 a

10.6 a

10.0 b

10.8 a


10.8 a


10.7 a


10.2 b

7.7 a

7.3 ab

7.9 a

7.1 ab

7.2 ab


7.5 a


7.6 a


7.0 b

5.08 ab

5.44 a

5.64 a

4.94 ab

4.78 b


5.15 ab


4.62 b


3.64 c

0.52 b

0.59 ab

0.64 a

0.56 ab

0.45 bc


0.55 ab


0.55 ab


0.39 c

Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

22.2 d

27.1 b

28.4 b

32.0 a

26.2 c


30.7 ab


31.4 a


27.9 b

0.38 a

0.40 a

0.38 a

0.40 a

0.39 a


0.39 a


0.38 a


0.41 a

8.4 b

9.2 a

8.7 b

9.6 a

8.8 ab


9.5 a


9.4 a


9.4 a

11.2 ab

12.9 a

12.2 a

12.9 a

12.5 a


12.4 a


12.3 a


12.7 a

8.3 b

9.2 a

8.5 b

9.4 a

8.6 b


8.7 b


8.6 b


8.9 ab

4.88 c

6.56 ab

5.31 bc

7.04 a

5.56 bc


6.32 ab


5.76 b


6.15 b

0.45 c

0.58 ab

0.57 ab

0.65 a

0.57 ab


0.65 a


0.55 b


0.52 b

zThe date of sowing, grafting and investigation of growth characteristics were Nov. 8, Dec. 13, and Jan. 24, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.





- 47 -

Table 10. The growth characteristics of two grafted tomato seedlings (Momotaroyork/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh weight

(g/plant)

Dry weight

(g/plant)

Bench

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

22.3 by

25.0 a

25.1 a

19.7 bc

22.5 b


23.2 b


23.7 b


20.0 bc

0.42 b

0.44 a

0.45 a

0.41 b

0.42 b


0.46 a


0.44 a


0.42 b

8.0 b

8.9 a

9.0 a

8.5 ab

8.9 a


8.4 ab


8.5 ab


8.8 a

13.0 a

12.5 ab

12.5 ab

11.6 b

13.6 a


12.9 ab


12.5 ab


12.1 b

8.8 a

8.4 ab

8.5 ab

8.0 b

9.1 a


8.5 ab


8.2 ab


7.9 b

5.89 ab

5.87 ab

6.10 a

5.22 b

5.96 ab


5.77 ab


5.70 ab


5.99 ab

0.63 b

0.63 b

0.74 a

0.61 b

0.63 b


0.66 b


0.66 b


0.66 b

Bed

Shading curtain (shading 30%)

Shading curtain (shading 50%)

Non- woven fabric (40 g‧m- 2)

Non- woven fabric (80 g‧m- 2)

Aluminum- coated non- woven fabric film

Aluminized polyester sheet

(shading 54% with heat insulation 57%)

Aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

19.3 c

21.2 b

22.4 ab

22.0 ab

23.7 a


24.9 a


22.1 ab


21.2 ab

0.39 a

0.42 a

0.43 a

0.39 a

0.42 a


0.40 a


0.39 a


0.41 a

7.7 ab

7.9 a

8.2 a

8.1 a

8.5 a


8.4 a


8.2 a


8.5 a

12.8 a

12.9 a

13.3 a

12.7 a

13.2 a


12.9 a


13.1 a


13.2 a

8.8 a

8.9 a

9.4 a

9.0 a

9.4 a


9.0 a


9.2 a


9.1 a

5.15 bc

5.70 ab

5.93 ab

5.29 b

6.25 a


6.08 a


5.73 ab


5.75 ab

0.48 ab

0.49 ab

0.52 a

0.54 a

0.53 a


0.52 a


0.49 ab


0.44 b

zThe date of sowing, grafting and investigation of growth characteristics were Nov. 8, Dec. 13, and Jan. 24, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.





- 48 -

2. 활착실 환경조건에 따른 토마토 접목묘의 소질


가. 피복자재와 활착실 종류


접목묘의 화방 착생에 미치는 영향을 구명하기 위하여 활착실은 벤치 및 베드활착실, 차광 피복자재는 알루미늄증착필름(차광 64%‧보온 62%) 2겹과 aluminum - coated polyester film(차광 90%‧보온 98%) 등 2종류를 처리하여 2002년 9월 4일 조사한 결과, 접목 활착실내의 광도는 벤치 활착실에서 알루미늄증착필름(차광 64%‧보온 62%) 2겹이 60μmolm- 2‧s- 1, aluminum- coated polyester film(차광 90%‧보온 98%)은 101μmolm- 2‧s- 1이었고, 베드 활착실도 각각 60μmolm- 2‧s- 1, 100μmolm- 2‧s- 1로 유사한 경향이었다. 최저온도는 베드 활착실에서 aluminum- coated polyester film(차광 90%‧보온 98%)이 21.2℃, 최고온도도 29.8℃로 다른 처리보다 낮았다. 관행의 실생묘는 고온기에 온도를 하강시킬 수 있는 장치가 없어 2중 플라스틱 하우스내 최고온도가 35.2℃로 가장 높았고, 광량도 1,162μmolm- 2‧s- 1로 가장 많았다(Table 11).


Table 11. Effect of shading materials on light intensities and temperatures in two types propagation facilities for production of grafted tomato seedlings.

Facility

types

Treatment

Light intensityz

molm- 2‧s- 1)

Temperature

(℃)

Min.

Max.

Bench




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

60


101


22.4


22.0


33.9


32.5


Bed




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

60


100


21.9


21.2


31.2


29.8


Double layered  PE house

1,162

22.7

35.2

zPAR: photosynthetic active radiation, mean of measurement at Sep. 4 (1 pm).


- 49 -

접목 활착실의 피복자재 2종류를 달리해 차광한 벤치 및 베드 활착실 육묘에서방울토마토 접목묘와 실생묘의 묘소질은 디저트 품종의 실생묘가 생체중이 주당 7.50g, 건물중 0.91g, 초장 35.4cm로 피복자재 및 활착실에서 생육한 접목묘에 비해 생육이 왕성하였다. 방울토마토 접목묘에서 베드 활착실의 aluminum - coated polyester film(차광 90%‧보온 98%)은 생체중이 주당 5.64g, 건물중 0.76g, 초장 23.7cm로 다른 처리보다 생체중 및 건물중이 무겁고, 초장은 1~1.1㎝가 작아 우량묘가 생육되었다. 일반토마토에서 묘소질은 접목묘의 베드 활착실 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 생체중이 주당 6.98g, 건물중 0.98g, 초장 23.9cm로 다른 처리보다 생체중 및 건물중이 무겁고, 초장은 0.1~1.7cm가 작아 건묘가 되었다(Table 12).

방울토마토에서 피복자재를 달리해 처리한 결과 접목묘의 화방형성은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 1화방 형성 절간수가 8.1이었고, 3화방까지의 총 절간수는 14.5로 다른 처리보다 0.3~1.3절간이 작았으며, 화방 지연의 억제효과가 있었다(Table 13).

일반토마토 접목묘의 화방형성은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리에서 1화방 형성 절간수가 11.8, 3화방 형성 총 절간수가 18.0으로 다른 처리보다 1.1~1.6절간이 작았으며, 화방지연의 억제효과가 있었고, 일반토마토가 방울토마토보다 큰 효과를 얻었다(Table 13).

Jang 등(1996)은 토마토를 온도가 다른 해발 800m의 고랭지와 평탄지에서 각각 육묘한 경우 정식 후 제1화방을 기준으로 할 때의 착과절위는 고랭지 육묘가 평난지 육묘보다 1.3~3절이 낮았다고 보고하였고, Jeong과 Kim(1999), Jeong등(1999)은 육묘 중 일평균 기온이 높아질수록 착과절위가 높아지며 야간기온을낮게 할 때 제2화방의 착과절위가 더 낮아진다고 하였다. 또한 초장, 제1화방과 제2화방은 주간과 야간 온도의 상호작용보다는 일평균 온도의 영향을 더 많이 받았으며, 엽수는 주간과 야간의 기온의 영향을 받지 않았다고 보고하였다. 김 등(2000b)은 일반토마토를 고온기에 육묘한 경우, 제1화방의 착생절위는 접목묘가 9.5절이었고, 야냉육묘는 10.5절, 상온육묘는 13.4절이라고 하였다. 육묘조건을 보면 접목육묘는 접수의 본엽이 8매가 전개되면 5엽 위에 잘라 할접으로 하였고, 야냉육묘는 16.5±0.5℃ 냉장고를 이용하여 야간에 15시간 관리하였으며,


- 50 -

Table 12. The growth characteristics of two grafted tomato seedlings (Dessert/Solution, Legend/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Facility type

Treatment

Plant height

(cm)

Stem diameter

(cm)

No. of leaves


Leaf

length

(cm)

Leaf

width

(cm)

Fresh 

weight

(g/plant)

Dry

weight

(g/plant)

Dessert/Solution

Bench




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

24.7 by


24.8 b


0.36 b


0.36 b


9.7 b


9.7 b


9.4 b


9.8 b


6.4 b


6.7 b


4.86 b


5.10 b


0.68 b


0.72 b


Bed




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

22.1 b


23.7 b


0.35 b


0.35 b


10.2 a


10.1 a


8.8 bc


9.7 b


6.3 b


6.7 b


4.95 b


5.64 b


0.69 b


0.76 b


Double layered  PE house(seedling)

35.4 a

0.42 a

10.2 a

11.5 a

8.3 a

7.50 a

0.91 a

Legend/Solution

Bench




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

25.6 a


24.7 b


0.36 a


0.33 ab


8.7 a


8.6 a


12.5 a


12.1 a


8.3 ab


8.0 ab


5.94 b


6.03 b


0.82 b


0.89 ab


Bed




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

24.0 b


23.9 b


0.36 a


0.38 a


8.9 a


9.0 a


12.2 a


13.1 a


8.0 ab


8.9 a


5.82 b


6.98 a


0.83 b


0.98 a


Double layered  PE house(seedling)

24.6 b

0.36 a

8.2 b

10.5 b

7.3 b

5.24 c

0.91 ab

zThe date of sowing, grafting and investigation of growth characteristics were Aug. 6, Aug. 27, and Sep. 15, respectively.

yMean separation within columns for each grafted union by Duncan´s multiple range test at P = 0.05.




- 51 -

Table 13. The node of flower clusters in two grafted tomato seedlings (Dessert/Solution, Legend/Solution) as influenced by various shading materials during acclimation in bench or bed propagation facilities.z

Facility type

Treatment

Node of 1st flower cluster

Node of 2nd flower cluster

Node of 3rd flower cluster

Dessert/Solution

Bench




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

9.4 ay


8.3 bc


12.4 ab


12.2 b


15.1 ab


15.2 ab


Bed




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

8.6 c


8.1 c


11.9 bc


11.5 c


14.8 b


14.5 bc


Double layered  PE house(seedling)

9.1 ab

12.9 a

15.8 a

Legend/Solution

Bench




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

13.1 ab


13.3 a


16.2 ab


16.4 a


19.3 ab


19.4 ab


Bed




Double aluminized polyester sheet

(shading 64% with heat insulation 62%)

Aluminum- coated polyester film

(shading 90% with heat insulation 98%)

12.9 ab


11.8 b


16.0 b


14.9 c


19.1 ab


18.0 b


Double layered  PE house(seedling)

13.6 a

16.6 a

19.6 a

zThe date of sowing, grafting and investigation of growth characteristics were Aug. 6, Aug. 27, and Sep. 15, respectively.

yMean separation within columns for each grafted union and seedlings by Duncan´s multiple range test at P = 0.05.




- 52 -

주간에는 상온육묘를 하였고, 접목묘의 저절위 화방 착생은 접수의 생육 정도가유묘가 아니고 성묘를 사용한 효과로 판단된다. Itagi 등(1991)은 토마토 등 가지과 작물이 접목 직후의 활착단계에서 활착률을 높이기 위해 약광 상태로 환경조건을 관리하는데 이는 절간 신장을 촉진시켜 식물이 도장하는 원인이 되었다. 이러한 문제는 하절기뿐만 아니라 동절기의 약광 조건에서도 많이 발생한다고 하였는데, 본 실험에서도 이상의 결과를 볼 때 방울 및 일반토마토는 고온기 육묘를 할 경우 화방형성 절간수가 증가하므로 접목 활착실의 차광 피복자재 aluminum- coated polyester film(차광 90%‧보온 98%)에서 베드 활착실이 적정 온도 유지가 되었고, 적정 단열 및 광량 조절방법으로 생각되었으며 화방지연 억제효과가 우수하였는데 기존의 연구결과와 같은 경향이었다.


나. 환기 시기와 지연 접목


접목 활착실의 환기 지연과 적정 대목 묘령보다 지연 접목한 결과 Fig. 6 및 Fig. 7과 같은 결과를 얻었다. 접목 활착실의 환기는 접목 후 4일부터 야간에 시작하며, 서서히 증가 시켜서 10일 후에 완전히 피복물을 제거하면 될 것으로 판단된다. 또한 접목 활착실의 환기가 지연되면 접목 부위에서 발근이 시작되므로 수시관찰이 요구되고, 발근 확인 즉시 환기를 실시해야 할것으로 판단되었다. 활착실의 관수관리는 환기가 시작 되면 낮은 수압의 살수기로 맑은 날 기준으로 하면 하루에 2~3회 적은 량을 주어야 할것으로 판단된다(Fig. 6).

대목 자엽액아의 측지 발생은 자엽위에 접목을 할 때 발생되었다. 즉 접목 묘령은 대목과 접수의 잎이 2~3매 되었을 때 실시하면 적정 생육기이고, 적정 묘령보다 늦게 대목의 자엽 위에 접목할 경우 접목 부위의 유합조직이 늦게 형성되면서 접목 활착이 지연되고, 접목 부위가 견고하지 않았다(Fig. 7).

Fukui 등(1990)은 토마토 대목의 자엽기부에서 액아 발생의 경우 절단면이 크면 감소한다고 하였으며, 1.5매 전개엽수의 묘는 2.5매 전개엽수보다 높았다고 보고하였다. 또한 토마토 플러그묘 접목 활착률은 대목의 접목 부위보다 접수의 전개엽수가 크게 영향을 준다고 하였다. 즉 대목의 절단 부위에 따라 자엽기부에서의 액아 발생이 달라지며, 제1화방 착생절위는 대목의 접목 부위 


- 53 -

배축부가 자엽 상부보다, 접수의 전개엽수가 적으면 낮아졌다고 하였는데 본 실험에서도 자엽 액아의 발생이 같은 경향임을 확인할 수 있었다.


 

Normal     Formation of aerial root


Fig. 6. Formation of aerial root in scion caused by delayed ventilation in propagation facilities.


 

Shooting from axillary bud        Normal


Fig. 7. Shooting from axillary bud of stock tomato caused by delayed grafting.


- 54 -

3. 접목묘 재배 시 시비량이 생육, 수량 및 품질에 미치는 영향


가. 촉성재배


토마토의 고정 시설재배가 확대됨에 따라 연작장해 및 토양 전염성의 병해충 피해가 증가하고, 또한 접목묘 재배의 경우 흡비력이 강하여 과번무, 이상줄기 및 착과불량 현상 등이 발생하여 수량 감소와 품질 저하의 원인이 되는데 이를 해결하는 방안으로 시비량을 조절하는 방법을 이용하기 위해 이 실험을 실시하였다. 시험 전 토양 화학성은 유기물 함량이 80.3g‧kg- 1로 25~35g‧kg- 1 적정 범위의 시설재배 토양보다, 유효인산 함량도 1,475mg‧kg- 1로 350~500 mg‧kg- 1의 적정 범위보다 높았다(Table 14). 시험 후 토양 화학성은 방울토마토(꼬꼬/카게무샤) 접목묘 촉성재배한 후 표준시비량(N- K2O)의 40%부터 120%까지 시비량이 증가할수록 토양의 염농도(EC)가 1.21dS‧m- 1부터 1.92dS‧m- 1 까지 높아지는 것으로 분석되었다. 또한 치환성 양이온도 같은 경향이었다. 일반토마토(모모타로요크/카게무샤)의 접목묘 촉성재배 후 표준시비량(N- K2O)의 40%부터 120%까지 시비량이 증가할수록 토양의 염농도(EC)가 1.28dS‧m- 1부터 2.02dS‧m- 1 까지 높아지는 것으로 분석되었다. 또한 치환성 양이온도 같은 경향이었다. 실험 후 접목묘 표준시비량에서의 K2O 치환성 양이온은 방울 및 일반토마토 모두 실생묘 표준시비량 처리보다 낮은 것을 보면 흡비력이 강한 것으로 판단된다(Table 15).

Matsuzoe 등(1991)은 접목 토마토의 흡비 특성은 대목 종류에 많은 영향을 받아 잎의 무기물 함량이 달라지며, 대목의 특이성과 계절에 따른 흡비력의 차이 등을 고려하여 실용성이 있는 대목이 선택되어야 한다고 하였는데 본 촉성재배 실험에서는 접수 품종 간에 유사한 경향이었다.

방울토마토에서 엽장과 엽폭은 실생묘 표준시비량이 접목묘의 표준시비량 처리보다 각각 29.8cm, 28.1cm로 작은 수준이었고, 경경도 통계적으로 유의한 차이는 없었으나 작은 경향이었다. 또한 초장은 표준시비량(N- K2O:20.4- 12.2 kg/10a)의 60% 처리가 487㎝로 큰 경향이었고, 경경도 80% 처리가 굵은 경향이었다. 일반토마토에서 초장 및 경경은 시비량 간에 통계적으로 유의한 차이는 없었으나 표준시비량 (N- K2O:20.4- 12.2kg/10a)의 80% 처리가 422cm로 가장 크고, 1.38cm로 굵은 경향이었다(Table 16).


- 55 -

Table 14. Chemical properties of soil analysed before forcing culture of grafted tomatoes.

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(g‧kg- 1)

Available

phosphate

(mg‧kg- 1)

Exchangeable cation

(cmol‧kg- 1)

K

Ca

Na

Mg

6.28

1.53

80.3

1,475

3.0

11.1

1.5

4.3



Table 15. Chemical properties of soil analysed after forcing culture of grafted tomatoes.

Fertilizer level

(% of SRF)z

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(g‧kg- 1)

Available

phosphate

(mg‧kg- 1)

Exchangeable cation

(cmol‧kg- 1)

K

Ca

Na

Mg

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

6.24 ay

6.23 a

6.34 a

6.30 a

6.32 a

6.43 a

1.21 b

1.39 b

1.42 b

1.80 ab

1.92 a

1.85 ab

93.7 a

105.4 a

96.5 a

91.4 a

96.4 a

88.3 a

1,480 b

1,739 a

1,818 a

1,759 a

1,857 a

1,756 a

2.8 bc

2.9 bc

3.4 c

3.3 b

4.2 a

3.9 a

9.4 a

10.9 a

11.6 a

10.4 a

12.0 a

13.3 a

1.2 b

1.5 a

1.6 a

1.3 ab

1.8 a

1.4 ab

3.8 b

4.8 ab

5.2 a

4.0 b

5.6 a

4.3 b

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

6.25 a

6.26 a

6.31 a

6.32 a

6.34 a

6.38 a

1.28 b

1.42 b

1.49 b

1.91 a

2.02 a

1.98 a

92.8 a

97.5 a

96.7 a

94.3 a

96.5 a

92.5 a

1,570 a

1,763 a

1,797 a

1,865 a

1,892 a

1,859 a

2.9 bc

3.1 b

3.6 b

3.8 b

4.3 a

4.1 a

9.6 c

11.3 b

11.8 b

11.9 b

12.2 b

13.4 a

1.3 a

1.7 a

1.6 a

1.5 a

1.8 a

1.6 a

4.0 b

4.9 ab

5.1 ab

4.9 ab

5.9 a

4.4 b

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´smultiple range test at P = 0.05.




- 56 -

Table 16. Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Momotaroyork/Kagemusya) in forcing culture.z

Fertilizer level

(% of SRF)y

Plant height

(cm)

Leaf length

(cm)

Leaf width

(cm)

Stem diameter

(cm)

No. of clusters

Koko/Kagemusya

40

60

80

100

120

100 (Seedlings)

477 ax

487 a

475 a

481 a

465 a

465 a

33.7 a

33.4 a

34.1 a

35.1 a

34.2 a

29.8 b

30.3 a

30.7 a

34.8 a

33.3 a

33.2 a

28.1b

1.27 a

1.25 a

1.33 a

1.23 a

1.20 a

1.17 a

18.4 a

19.1 a

18.4 a

18.7 a

17.7 a

17.8 a

Momotaroyork/Kagemusya

40

60

80

100

120

100 (Seedlings)

402 a

406 a

422 a

415 a

414 a

410 a

35.3 b

33.3 b

34.0 b

38.3 a

37.0 ab

35.7 b

37.0 a

38.7 a

36.9 a

38.8 a

38.8 a

36.7 a

1.27 a

1.27 a

1.38 a

1.18 a

1.34 a

1.27 a

15.0 a

15.1 a

15.3 a

15.4 a

15.5 a

15.4 a

zGrafted seedling were planted on Sep. 16 and growth characteristics were investigated on Jul. 3.

ySRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

xMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


방울토마토에서 총수량은 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40%, 60% 처리가 각각 20,225kg/10a, 20,543kg/10a으로 가장 높았다. 또한 상품수량도 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40%, 60% 처리가 각각 19,239kg/10a, 18,575 kg/10a으로 가장 높았다(Table 17). 일반토마토에서 총수량은 표준시비량(N-  K2O:20.4- 12.2kg/10a)의 60% 처리가 25,759kg/10a로 가장 높았으며, 상품수량도 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40%, 60% 처리가 각각 18,303kg/10a, 19,719kg/10a로 가장 높았다(Table 18).


- 57 -

Table 17. Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Koko/Kagemusya) in forcing culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

7~10 g

10~15 g

15~20 g

> 20 g

40

60

80

100

120

100 (seedling)

20,225 ay

20,543 a

19,755 ab

18,532 b

19,617 ab

15,825 c

19,239 a

18,575 a

18,051 ab

17,427 b

17,251 b

13,821 c

3,300

4,492

4,314

3,506

4,083

4,459

10,245

8,659

9,413

8,760

8,947

6,888

4,884

4,316

3,643

4,388

3,457

2,128

810

1,108

681

773

764

346

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.



Table 18. Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya) in forcing culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

70~100 g

100~150 g

150~200 g

> 200 g

40

60

80

100

120

100 (seedling)

23,168 by

25,759 a

19,557 c

19,788 c

19,638 c

19,518 c

18,303 a

19,719 a

16,170 b

16,287 b

14,657 c

15,274 bc

2,314

3,432

2,621

3,070

2,449

2,570

5,505

6,598

5,143

5,271

4,405

4,747

5,017

4,644

4,185

4,083

3,638

3,816

5,467

5,045

4,221

3,863

4,165

4,141

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.




- 58 -

박 등(2003)은 방울 및 일반토마토 접목재배의 경우 상품수량은 무접목 실생묘보다 증수하였다고 하였는데 본 실험에서도 수량성은 대목의 흡비력이 높아진 원인으로 방울 및 일반토마토가 모두 같은 경향을 보였으며, 시비량을 줄인 표준시비량(N- K2O:20.4- 12.2kg/10a)의 40%, 60% 처리가 높았다.

방울토마토에서 1과중은 표준시비량의 60% 처리가 11.6g으로 가장 무거웠으며, 실생묘는 표준시비량에서 9.5g으로 가장 가벼웠으나 가용성고형물 함량‧과즙의 pH‧과실 경도는 시비량 간에 차이가 없었다. 가용성고형물 함량은 시비량 간에 통계적 유의한 차이는 없었으나 시비량이 증가할수록 높아지는 경향이었다. 일반토마토에서 1과중은 접목묘 표준시비량 처리가 130g으로 가장가벼웠으나 가용성고형물 함량‧과즙의 pH‧과실 경도는 시비량 간에 차이가 없었다(Table 19).

정 등(1996)은 대목용 품종 ‘Vulcan’에 접목재배 했을 때 질소비료를 10a당 10, 20, 30kg씩 각각 시용한 결과 평균과중은 차이가 없었고, 질소비료 시비량이 증가할수록 접목 처리가 기형과, 생육불량과, 잿빛곰팡이병, 가용성고형물함량 및 Citric acid 함량이 감소한다고 하였다. 또한 박 등(2003)은 방울토마토 접목재배의 경우 가용성고형물 함량은 실생묘가 높았고 일반토마토에서는 차이가 없었다고 하였는데 본 촉성재배 실험에서 1과중은 방울토마토의 접목묘간에서 표준시비량의 60% 처리가 가장 무거웠고, 또한 실생묘는 접목묘보다 가벼웠다. 일반토마토는 1과중 및 가용성고형물 함량이 처리 간에 차이가 없는 것을 보면 시비량에 대한 반응이 방울토마토보다 차이가 적은 것으로 생각된다.










- 59 -

Table 19. Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Koko/Kagemusya, Momotaroyork/Kagemusya) in forcing culture.

Fertilizer level

(% of SRF)z

Average fruit weight

(g)

Soluble solids

(°Brix)


Fruit juice pH



Firmness of

fruit 

(kg‧cm- 2)

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

11.5 ay

11.6 a

10.3 b

11.2 ab

10.2 b

9.5 c

6.7 a

6.9 a

6.9 a

6.8 a

7.1 a

6.8 a

3.65 a

3.61 a

3.67 a

3.68 a

3.69 a

3.63 a

0.65 a

0.65 a

0.66 a

0.64 a

0.65 a

0.65 a

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

144 a

139 a

140 a

130 b

140 a

142 a

5.5 a

5.6 a

5.5 a

5.7 a

5.7 a

5.7 a

3.74 a

3.75 a

3.73 a

3.83 a

3.83 a

3.70 a

0.62 a

0.61 a

0.60 a

0.62 a

0.63 a

0.61 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.










- 60 -

나. 반촉성재배


토마토의 접목묘를 반촉성 재배한 결과 추비시용은 생육초기에 흡비력이 강하여 과번무가 되므로 정식 2개월 후에 N- K2O 추비를 시용하였다.

시험 후 토양 화학성은 방울토마토 접목 반촉성 재배의 경우 표준시비량(N- K2O)의 40%부터 120%까지 모든 처리 토양의 염농도(EC)가 1.21dS‧m- 1부터 1.58dS‧m- 1까지로 시비량이 증가할수록 높아졌다. 일반토마토도 접목 반촉성 재배한 결과 표준시비량(N- K2O)의 40%에서 120%까지 토양의 염농도가 1.37dS‧m- 1부터 1.59dS‧m- 1까지로 시비량이 증가할수록 높아지고, 방울토마토와 같은 경향이었다(Table 21).

방울토마토에서 꼬꼬/카게무샤의 초장은 표준시비량(N- K2O:20.4- 12.2kg/10a)처리가 247㎝, 꼬꼬/솔루션도 표준시비량(N- K2O:20.4- 12.2kg/10a) 처리가 237cm로가장 컸다. 일반토마토에서 모모타로요크/카게무샤의 초장은 표준시비량(N- K2O :20.4- 12.2kg/10a) 처리가 234cm로 가장 크고, 경경도 1.81cm로 굵었다.모모타로요크/솔루션의 경경은 표준시비량(N- K2O:20.4- 12.2kg/10a)의 120% 처리가 1.92 cm로 굵은 경향이었다(Table 22, 23).

Lee 등(1997a)은 토마토에서 대목 종류에 따라 초기 생육에는 차이가 있었지만 생육이 진전 될수록 차이가 없었다고 하였으나, 靑木 등(1979)은 토마토 접목재배의 경우 대목에 따라서 접수의 생육이 달라 종간 잡종인 F1 품종이 다른 대목들보다 현저하게 생육이 왕성하다고 하였는데 본 반촉성 재배 실험에서는 대목 종류에 따라 시비량을 다르게 시용하였을 때 차이가 있으나 억제재배보다는 적었으며, 靑木 등(1979)의 결과와 같은 경향이었다.


Table 20. Chemical properties of soil analysed before semi- forcing culture of grafted tomatoes.

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(gkg- 1)

Available

phosphate

(mgkg- 1)

Exchangeable cation

(cmolkg- 1)

K

Ca

Mg

6.43

1.54

50

285

3.5

13.7

2.7


- 61 -

Table 21. Chemical properties of soil analysed after semi- forcing culture  of grafted tomatoes.

Fertilizer level

(% of SRF)z

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(gkg- 1)

Available

phosphate

(mgkg- 1)

Exchangeable cation

(cmol‧kg- 1)

K

Ca

Mg

Koko

40

60

80

100

120

100 (seedling)

6.88 ay

7.01 a

6.78 a

6.86 a

6.69 a

6.69 a

1.21 bc

1.33 b

1.47 ab

1.31 b

1.58 a

1.50 ab

51.2 c

57.8 b

64.5 ab

69.3 a

70.1 a

47.5 cd

350 a

269 a

249 a

271 a

268 a

327 a

2.2 b

2.4 ab

2.4 ab

2.2 b

2.7 a

2.0 b

9.8 b

10.5 a

11.1 a

11.1 a

7.9 c

11.8 a

4.2 a

4.2 a

4.1 a

3.9 a

4.2 a

4.0 a

Momotaroyork

40

60

80

100

120

100 (seedling)

6.95 a

6.74 a

6.91 a

6.95 a

6.75 a

6.68 a

1.37 b

1.40 b

1.48 ab

1.21 c

1.59 a

1.67 a

58.5 b

65.9 a

65.8 a

68.6 a

66.4 a

68.9 a

281 a

276 a

274 a

273 a

272 a

332 a

2.3 b

2.5 b

2.6 b

2.4 b

3.3 a

2.9 ab

12.3 a

9.0 b

10.3 ab

10.4 ab

9.7 b

9.4 b

4.3 a

4.3 a

4.7 a

3.8 b

4.8 a

4.2 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.









- 62 -

Table 22. Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi- forcing culture.z

Fertilizer level

(% of SRF)y

Plant height

(cm)

Leaf length

(cm)

Leaf width

(cm)

Stem diameter

(cm)

No. of clusters

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

225 bx

231 ab

220 b

247 a

231 ab

211 c

34.7 ab

30.9 b

32.0 b

35.0 ab

37.0 a

30.2 b

33.6 a

28.1 b

31.3 ab

32.0 ab

34.6 a

27.1 b

1.69 a

1.62 a

1.68 a

1.64 a

1.71 a

1.55 b

11.2 a

11.7 a

11.5 a

11.4 a

11.6 a

10.9 a

Koko/Solution

40

60

80

100

120

224 ab

213 b

225 ab

237 a

216 b

44.0 a

32.9 b

37.3 b

32.3 b

34.5 b

35.5 a

31.2 ab

34.6 a

26.7 b

32.3 ab

1.60 a

1.62 a

1.62 a

1.67 a

1.50 b

11.5 a

12.1 a

12.1 a

11.6 a

11.4 a

zGrafted seedling were planted on Mar. 12 and growth characteristics were investigated on Aug. 2.

ySRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

xMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.









- 63 -

Table 23. Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in semi- forcing culture.z

Fertilizer level

(% of SRF)y

Plant height

(cm)

Leaf length

(cm)

Leaf width

(cm)

Stem diameter

(cm)

No. of clusters

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

219 abx

225 ab

225 ab

234 a

225 ab

222 ab

42.2 a

38.7 b

42.1 a

38.9 b

42.8 a

36.8 bc

37.4 ab

32.2 b

37.9 ab

35.6 b

40.5 a

34.1 b

1.62 b

1.69 b

1.63 b

1.81 a

1.64 b

1.80 a

9.6 b

9.9 a

9.4 b

10.0 a

9.4 b

9.5 b

Momotaroyork/Solution

40

60

80

100

120

229 a

223 a

222 a

229 a

218 a

42.9 a

39.0 b

40.5 b

40.4 b

43.7 a

39.2 a

36.7 b

36.0 b

38.8 ab

41.4 a

1.74 ab

1.74 ab

1.62 b

1.77 ab

1.92 a

9.4 a

9.6 a

9.5 a

9.4 a

9.6 a

zGrafted seedling were planted on Mar. 12 and growth characteristics were investigated on Aug. 2.

ySRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

xMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


꼬꼬/카게무샤는 총수량에서 표준시비량과 표준시비량의 40% 처리가 각각10,875kg/10a, 10,103kg/10a으로 가장 많았고, 상품수량은 표준시비량의 40%가 표준시비량보다 증수하였다. 꼬꼬/솔루션은 총수량에서 표준시비량의 40%가 9,745kg/10a으로 표준시비량보다 6.8% 증수하였고, 상품수량도 9,135kg/10a으로 표준시비량보다 7.5% 증수하였다(Table 24).

일반토마토를 반촉성 재배할 경우 모모타로요크/카게무샤는 총수량에서 표준시비량 처리가 17,113kg/10a으로 표준시비량 40% 처리보다 27.4% 증수하였고,상품수량도 표준시비량이 15,306kg/10a으로 표준시비량 40% 처리보다 36.4%


- 64 -

증수하였다. 모모타로요크/솔루션은 상품수량에서 표준시비량의 120%가15,043kg/10a으로 표준시비량보다 4.6% 증수하였고, 상품수량도표준시비량의120%가 12,111 kg/10a로 표준시비량보다 6.4% 증수하였다(Table 25).

이상의 결과를 볼 때 방울 및 일반토마토의 수량성은 대목 품종에서 카게무샤가 솔루션보다 높았으며, 일반토마토에서 솔루션 대목의 수량성은 표준시비량의 120%처리가, 카게무샤 대목은 표준시비량이 높은 것을 볼 때 대목 품종간의 흡비력 차이에 의한 수량 변화가 많았고, 시비 수준이 다른 것으로 생각된다.

甲田과 萩原(1984)은 토마토에서 대목 종류에 따라서 상품율 및 수량에 차이가 있다고 하였으나, Lee 등(1997a)과 정 등(1997)은 대목에 따라 차이가 없다고 하였는데 본 반촉성 재배 실험에서는 대목 종류에 따라 시비량을 다르게 시용하였을 때 차이가 있으며, 이 결과는 甲田과 萩原(1984)의 결과와 같은 경향이었다.


Table 24. Effects of N- K2O fertilizer levels on the yieldof grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi- forcing culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

7~10 g

10~15 g

15~20 g

> 20 g

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

10,691 ay

10,032 b

10,358 ab

10,875 a

10,158 b

8,395 c

10,103 a

8,589 d

9,680 b

9,859 ab

9,097 c

7,278 e

2,456

2,703

2,443

2,384

2,746

2,483

4,362

3,268

4,332

4,441

3,841

2,587

2,675

2,168

2,416

2,612

2,117

1,884

610

450

489

422

393

324

Koko/Solution

40

60

80

100

120

9,745 a

9,212 b

9,551 ab

9,122 b

8,275 c

9,135 a

7,824 c

8,755 ab

8,497 b

7,347 d

2,112

2,177

2,434

2,097

2,124

4,037

3,104

3,990

3,868

3,426

2,758

2,255

2,141

2,292

1,688

228

288

190

240

109

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


- 65 -

Table 25. Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in semi- forcing culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

70~100 g

100~150 g

150~200 g

> 200 g

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

13,432 cdy

13,738 c

15,249 b

17,113 a

14,496 bc

15,219 b

11,218 cd

10,849 d

13,091 b

15,306 a

11,780 bc

12,640 b

2,496

3,395

2,999

2,845

2,680

2,438

4,865

4,064

4,741

6,059

5,022

5,761

2,693

2,223

3,721

4,167

2,953

3,188

1,164

1,167

1,630

2,235

1,125

1,253

Momotaroyork/Solution

40

60

80

100

120

12,877 c

13,498 b

13,420 b

14,375 ab

15,043 a

9,564 bc

9,853 b

11,253 ab

11,383 ab

12,111 a

2,240

2,188

2,528

1,814

1,967

3,122

3,659

4,837

5,153

5,440

2,377

2,526

2,644

2,978

3,407

1,825

1,480

1,244

1,438

1,297

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


방울토마토의 1과중은 꼬꼬/카게무샤에서 표준시비량 처리가 13.3g으로 다른 처리보다, 꼬꼬/솔루션은 60% 표준시비량 처리가 11.3g으로 가장무거웠다. 가용성고형물 함량은 꼬꼬/카게무샤에서 표준시비량의 60% 처리가 6.5°Brix로 표준시비량120% 처리(5.9°Brix)보다 0.6°Brix가 높아졌고, 다른 처리 간에는 차이가 없었다. 꼬꼬/솔루션에서는 가용성고형물 함량, 과즙의 pH 및 과실경도의 처리 간 차이가 없었다(Table 26).

일반토마토의 1과중은 모모타로요크/카게무샤에서 100%와 120%의 표준시비량

처리가 각각 127g, 128g으로 다른 처리보다, 또한 모모타로요크/솔루션에서 100%


- 66 -

40%의 표준시비량 처리가 각각 118g, 117g으로 다른 처리보다 가장 무거웠다. 일반토마토의 가용성고형물 함량은 표준시비량의 60% 처리가 두 대목 품종이 같이 각각 6.5°Brix, 6.7°Brix로 다른 처리보다 높았다(Table 27). 

박 등(2003)은 방울토마토 접목재배의 경우 가용성고형물 함량은 실생묘가 높았고 일반토마토에서는 차이가 없었다고 하였는데 본 반촉성 재배 실험에서의 가용성고형물 함량은 실생묘가 대목 종류와 접목묘의 시비량을 달리하였을 경우 방울토마토에서 차이가 없었으나 일반토마토에서는 시비량을 달리할 경우가 대목 종류보다 차이가 있었다.


Table 26. Effects N- K2O of fertilizer levels on the fruit qualityof grafted tomatoes (Koko/Kagemusya, Koko/Solution) in semi- forcing culture.

Fertilizer level

(% of SRF)z

Average fruit weight

(g)

Soluble solids

(°Brix)


Fruit juice pH



Firmness of

fruit 

(kg‧cm- 2)

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

11.3 by

10.0 b

11.0 b

13.3 a

10.3 b

10.6 b

6.3 a

6.5 a

6.2 a

6.3 a

5.9 b

6.3 a

3.71 a

3.68 a

3.68 a

3.69 a

3.71 a

3.70 a

0.56 a

0.60 a

0.61 a

0.61 a

0.59 a

0.61 a

Koko/Solution

40

60

80

100

120

10.9 ab

11.3 a

10.5 b

10.8 ab

10.0 b

6.2 a

6.3 a

6.2 a

6.2 a

6.3 a

3.75 a

3.81 a

3.68 a

3.74 a

3.72 a

0.62 a

0.61 a

0.62 a

0.62 a

0.60 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedlings by Duncan´s multiple range test at P = 0.05.



- 67 -

Table 27. Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in semi- forcing culture.

Fertilizer level

(% of SRF)z

Average fruit weight

(g)

Soluble solids

(°Brix)


Fruit juice pH



Firmness of

fruit 

(kg‧cm- 2)

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

109 by

99 c

113 b

127 a

128 a

121 ab

6.3 ab

6.5 a

6.0 ab

5.5 b

6.0 ab

6.3 ab

3.82 a

3.85 a

4.06 a

3.92 a

3.85 a

3.82 a

0.56 a

0.57 a

0.57 a

0.55 a

0.59 a

0.56 a

Momotaroyork/Solution

40

60

80

100

120

117 a

103 b

113 ab

118 a

112 ab

5.6 b

6.7 a

5.9 ab

5.7 b

6.2 ab

3.85 a

3.88 a

4.04 a

3.87 a

4.02 a

0.59 a

0.58 a

0.55 a

0.56 a

0.58 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


다. 억제재배


토마토 접목묘 억제재배의 경우 생육초기에 흡비력이 강하여 과번무 현상이 발생하여 정식 3개월 후에 N- K2O 추비를 시용할 수 있었다.

시험 후 토양분석 결과는 방울토마토 접목 억제재배를 하였을 경우 표준시비량(N- K2O)의 40%에서 120%까지 시비량이 증가할수록 토양의 염농도(EC)가 1.13dS‧m- 1에서 1.59dS‧m- 1 까지 높아졌다. 일반토마토도 표준시비량(N- K2O)의 40%에서 120%까지 시비량이 증가할수록 토양의 염농도가 0.67dS‧m- 1


- 68 -

부터 1.77dS‧m- 1까지 높아졌다. 또한 방울 및 일반토마토에서 치환성 양이온도 같은 경향으로 높아졌다(Table 29).

방울토마토에서 초장은 표준시비량(N- K2O:20.4- 12.2kg/10a)의 실생묘가 230cm, 꼬꼬/솔루션의 표준시비량(N- K2O:20.4- 12.2kg/10a) 80% 처리가 233cm로 가장 컸다(Table 30).

일반토마토에서 모모타로요크/카게무샤의 초장과 경경은 표준시비량(N- K2O :20.4- 12.2kg/10a) 60% 처리가 각각 227cm, 1.34cm로 크고 굵었다. 모모타로요크/솔루션의 초장은 표준시비량(N- K2O:20.4- 12.2kg/10a) 60% 처리가 226cm로 크게 자랐고, 경경은 표준시비량(N- K2O:20.4- 12.2kg/10a)80%, 100% 처리가 1.39cm, 1.35cm로 가장 굵었다(Table 31).

Lee 등(1997a)은 토마토에서 대목 종류에 따라 초기 생육에는 차이가 있었지만 생육이 진전 될수록 차이가 없었다고 하였으나, 靑木 등(1979)은 토마토 접목재배의 경우 대목에 따라서 접수의 생육이 달라 종간 잡종인 F1 품종이 다른 대목들 보다 현저하게 생육이 왕성하다고 하였는데 본 억제재배 실험에서는 시비량을 달리할 경우 대목 종류에 따라 생육이 다르므로 靑木 등(1979)의 결과와 유사한 경향이었다.



Table 28. Chemical properties of soil analysed before retarding culture of grafted tomatoes.

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(g‧kg- 1)

Available

phosphate

(mg‧kg- 1)

Exchangeable cation

(cmol‧kg- 1)

K

Ca

Na

Mg

6.32

1.09

82.3

1,399

2.4

11.1

1.4

3.7





- 69 -

Table 29. Chemical properties of soil analysed after retarding culture of grafted tomatoes.

Fertilizer level

(% of SRF)z

pH

(1:5)

EC

(dS‧m- 1)

Organic

matter

(g‧kg- 1)

Available

phosphate

(mg‧kg- 1)

Exchangeable cation

(cmol‧kg- 1)

K

Ca

Mg

Koko

40

60

80

100

120

100 (seedling)

6.33 ay

6.18 a

6.15 a

6.15 a

5.88 a

5.99 a

1.13 b

1.18 b

1.33 b

1.40 b

1.59 ab

1.72 a

52.3 a

58.3 a

53.9 a

56.1 a

53.1 a

51.9 a

329 b

433 ab

362 b

352 b

590 a

374 b

3.9 c

5.1 b

5.2 b

5.2 b

6.2 a

5.0 b

12.1 b

12.7 b

12.9 b

12.9 b

14.5 a

13.4 b

2.6 a

2.5 a

2.7 a

2.7 a

2.8 a

2.8 a

Momotaroyork

40

60

80

100

120

100 (seedling)

6.23 a

6.15 a

6.20 a

6.28 a

6.19 a

6.10 a

0.67 c

0.77 c

1.13 b

1.13 b

1.77 a

1.50 a

49.9 b

49.8 b

54.0 a

56.9 a

56.9 a

54.1 a

317 a

400 a

346 a

386 a

327 a

418 a

3.4 b

3.6 b

4.5 a

4.2 ab

4.5 a

4.7 a

11.0 a

10.8 a

11.6 a

11.4 a

11.8 a

12.7 a

2.3 a

2.3 a

2.5 a

2.3 a

2.5 a

2.6 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.










- 70 -

Table 30. Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.z

Fertilizer level

(% of SRF)y

Plant height

(cm)

Leaf length

(cm)

Leaf width

(cm)

Stem diameter

(cm)

No. of clusters

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

199 bx

211 ab

199 b

207 ab

192 b

230 a

42.3 a

41.5 a

41.5 a

40.4 a

42.5 a

36.5 b

41.8 ab

41.9 ab

40.5 ab

39.6 ab

43.1 a

36.6 b

1.32 a

1.26 ab

1.31 a

1.27 ab

1.31 a

1.19 b

7.7 b

8.5 a

8.3 a

8.1 ab

8.4 a

8.6 a

Koko/Solution

40

60

80

100

120

220 ab

221 ab

233 a

183 b

219 ab

44.2 ab

43.2 ab

43.9 ab

43.8 ab

45.2 a

43.3 b

46.1 a

45.2 ab

43.5 b

47.6 a

1.29 a

1.14 b

1.26 a

1.11 b

1.19 b

8.4 a

7.7 b

7.7 b

7.8 b

7.9 b

zGrafted seedling were planted on Sep. 15 and growth characteristics were investigated on Mar. 8.

ySRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

xMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.










- 71 -

Table 31. Effects of N- K2O fertilizer levels on the growth of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in retarding culture.z

Fertilizer level

(% of SRF)y

Plant height

(cm)

Leaf length

(cm)

Leaf width

(cm)

Stem diameter

(cm)

No. of clusters

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

215 bx

227 a

222 ab

220 ab

227 a

221 ab

44.0 b

48.1 a

47.4 a

46.6 ab

48.4 a

44.3 b

43.1 b

46.9 a

46.7 a

46.4 a

45.9 a

43.5 b

1.20 a

1.34 a

1.27 a

1.32 a

1.27 a

1.17 a

7.3 a

7.4 a

7.6 a

7.0 a

7.3 a

7.3 a

Momotaroyork/Solution

40

60

80

100

120

209 b

226 a

214 ab

217 ab

218 b

45.8 b

46.5 b

47.5 a

44.9 b

48.4 a

47.5 a

47.7 a

48.0 a

44.5 b

45.5 b

1.22 b

1.23 b

1.39 a

1.35 a

1.32 ab

7.2 a

7.4 a

7.2 a

7.4 a

7.2 a

zGrafted seedling were planted on Sep. 15 and growth characteristics were investigated on Mar. 8.

ySRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

xMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.









- 72 -

방울토마토를 억제재배한 경우 총수량은 꼬꼬/카게무샤에서 표준량을 시비한 실생묘가 6,525kg/10a으로 표준시비량의 접목묘보다 5.4% 증수하였으나, 상품수량은 표준시비량의 40%가 5,687kg/10a로 표준시비량보다 3.7% 증수하였다. 꼬꼬/솔루션은 총수량에서 표준시비량의 40%가 5,721kg/10a로 표준시비량보다 11.2% 증수하였으며, 또한 상품수량은 표준시비량의 40%, 60%가 4,897kg/10a, 4,767kg/10a로 표준시비량보다 각각 15.0%, 12.0% 증수하였으며 통계적으로 유의한 차이가 있었다(Table 32).

일반토마토를 억제재배한 경우 총수량에서 모모타로요크/카게무샤는 표준시비량의 60%가 9,313kg/10a로 표준시비량보다 13.7% 증수하였고, 모모타로요크/솔루션은 표준시비량의 120%가 12,027kg/10a로 표준시비량보다 11.8%증수하였다. 상품수량에서 모모타로요크/카게무샤는 표준시비량의 60%가 6,396 kg/10a로 표준시비량보다 24.1% 증수하였고, 모모타로요크/솔루션은 표준시비량의 120%가 8,720kg/10a로 표준시비량보다 22.9% 증수하였다(Table 33).

이상의 결과를 볼 때 방울토마토는 대목 품종 간에 차이가 적은 반면, 일반

토마토는 대목 품종간의 흡비력 차이에 의한 수량변화가 많았고, 시비수준에 따른 반응이 다른 것으로 생각된다.

甲田과 萩原(1984)은 토마토에서 대목 종류에 따라서 상품율 및 수량에 차이가 있다고 하였으나, Lee 등(1997a)과 정 등(1997)은 대목에 따라 차이가 없다고 하였는데 본 억제재배 실험에서는 대목의 종류와 시비량에 따라 수량성이 차이가 있어 甲田과 萩原(1984)과 같은 경향이었다.











- 73 -

Table 32. Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

7~10 g

10~15 g

15~20 g

> 20 g

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

6,445 ay

6,287 ab

6,193 ab

6,189 ab

5,559 b

6,525 a

5,687 a

5,561 ab

5,287 bc

5,482 ab

4,707 d

5,088 c

1,317

1,438

1,636

1,531

1,446

1,699

2,643

2,668

2,454

2,468

2,231

2,216

1,104

920

869

908

716

674

623

535

328

575

314

479

Koko/Solution

40

60

80

100

120

5,721 a

5,692 a

5,233 b

5,146 b

5,166 b

4,897 a

4,767 a

4,512 b

4,258 c

4,363 bc

1,303

1,878

1,215

1,779

1,415

2,197

2,034

2,312

1,688

2,014

833

566

770

536

682

564

289

215

255

252

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.










- 74 -

Table 33. Effects of N- K2O fertilizer levels on the yield of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in retarding culture.

Fertilizer level

(% of SRF)z

Total yield

(kg/10 a)

Marketable yield (kg/10 a)

Total

70~100 g

100~150 g

150~200 g

> 200 g

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

9,001 bcy

9,313 a

8,673 ab

8,188 c

8,822 b

8,489 bc

5,168 c

6,396 a

4,887 d

5,152 cd

5,951 b

5,518 bc

1,913

1,754

1,872

1,120

1,453

1,865

2,100

2,343

2,166

2,388

2,815

2,577

1,142

1,529

537

1,348

1,173

861

229

770

312

296

470

215

Momotaroyork/Solution

40

60

80

100

120

10,375 bc

10,787 b

11,438 ab

10,758 b

12,027 a

7,087 c

7,430 bc

8,138 ab

7,098 c

8,720 a

1,731

1,739

1,750

1,232

1,661

3,222

3,122

3,539

2,847

3,952

1,437

2,135

1,816

1,717

2,079

697

434

1,033

1,302

1,028

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.



울토마토의 1과중은 꼬꼬/카게무샤에서 표준시비량의 40%가 10.5g으로, 꼬꼬/솔루션에서 표준시비량의 80%가 10.3g으로 다른 처리보다 무거웠다. 또한 가용성고형물 함량은 실생묘 표준시비량이 꼬꼬/카게무샤의 접목묘보다 0.6°Brix가 높았으나, 꼬꼬/카게무샤, 꼬꼬/솔루션, 모모타로요크/카게무샤, 모모타로요크/솔루션 등 각 품종은 시비량 증가에 따른 일정한 경향이 없었다(Table 34, 35). 이러한 원인은 억제재배에서의 시비 횟수가 2회로 양이 적기 때문인 것으로 생각된다.일반토마토의 1과중은 모모타로요크/카게무샤에서 표준시비량의 60%


- 75 -

와 실생묘 표준시비량 처리가 가장 무거웠으며, 모모타로요크/솔루션에서는 표준시비량 처리가 123g으로 가장 무거웠다. 과즙의 pH와 과실 경도는 대목과 접수품종을 달리해도 통계적으로 유의한 차이가 없었다. 


Table 34. Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Koko/Kagemusya, Koko/Solution) in retarding culture.

Fertilizer level

(% of SRF)z

Average fruit weight

(g)

Soluble solids

(°Brix)


Fruit juice pH



Firmness of

fruit 

(kg‧cm- 2)

Koko/Kagemusya

40

60

80

100

120

100 (seedling)

10.5 ay

10.2 a

9.5 b

10.1 a

9.2 b

8.9 bc

7.1 b

6.8 b

7.3 ab

6.6 c

6.9 b

7.7 a

4.32 a

4.34 a

4.32 a

4.32 a

4.33 a

4.28 a

0.67 a

0.63 a

0.64 a

0.65 a

0.63 a

0.64 a

Koko/Solution

40

60

80

100

120

9.8 ab

8.8 b

10.3 a

9.1 b

9.1 b

7.1 a

6.6 ab

7.1 a

7.2 a

6.3 b

4.22 a

4.45 a

4.39 a

4.53 a

4.47 a

0.61 a

0.61 a

0.64 a

0.64 a

0.63 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.







- 76 -

Table 35. Effects of N- K2O fertilizer levels on the fruit quality of grafted tomatoes (Momotaroyork/Kagemusya, Momotaroyork/Solution) in retarding culture.

Fertilizer level

(% of SRF)z

Average fruit weight

(g)

Soluble solids

(°Brix)


Fruit juice pH



Firmness of

fruit 

(kg‧cm- 2)

Momotaroyork/Kagemusya

40

60

80

100

120

100 (seedling)

82 by

96 a

76 c

85 ab

86 ab

95 a

5.6 b

6.0 a

6.0 a

5.7 ab

5.4 b

5.8 ab

4.24 a

4.25 a

4.21 a

4.24 a

4.21 a

4.39 a

0.59 a

0.62 a

0.60 a

0.59 a

0.60 a

0.54 a

Momotaroyork/Solution

40

60

80

100

120

106 c

113 b

114 b

123 a

117 ab

6.5 a

5.8 ab

6.3 a

6.2 a

5.6 b

4.31 a

5.21 a

4.25 a

4.31 a

4.40 a

0.61 a

0.60 a

0.61 a

0.58 a

0.60 a

zSRF: standard rate of fertilizer (N- K2O: 20.4- 12.2 kg/10 a).

yMean separation within columns for each grafted union and seedling by Duncan´s multiple range test at P = 0.05.


- 77 -

Ⅴ. 적     요


본 시험은 접목묘 대량 생산을 위하여 실용화가 용이한 접목 환경조건을 구명하고, 또한 토마토 접목재배의 경우 대목이 흡비력이 강하여 과번무로 인한 수량 감수 및 품질이 저하가 되므로 이를 해결하기 위한 적정 시비량을 구명하고자 실험한 결과는 다음과 같다.


1. 활착실 환경조건에 따른 토마토 접목묘 생산


가. 피복자재에 따른 활착률 및 묘소질


1) 10월 11일 접목했을 때 피복자재별 접목 활착률은 방울토마토에서 aluminum - coated polyester film(차광 90%‧보온 98%) 처리가 89%로 가장 높고, 다음으로 알루미늄증착필름(차광65%‧보온 60%) 87% 이었다. 일반토마토는 알루미늄증착필름(차광65%‧보온 60%) 처리가 99%로 가장 높고, 그 다음으로알루미늄증착필름(차광 54%‧보온 57%) 및 30% 차광막 처리가 각각 95%로높았다. 방울토마토와 일반토마토 모두 알루미늄증착필름(차광 64%‧보온 62%) 처리가 활착률이 높고, 생체중이 무거운 등 묘소질도 양호하였다.

2) 11월 23일에 접목 시 벤치에서의 접목 활착률은 방울토마토에서 30% 차광막 처리가 95%로 가장 높았다. 일반토마토는 30%‧50% 차광막 처리가 각각 96%로 다른 처리보다 높았고, 겨울철의 저온 및 광량이 부족한 시기의 접목 활착률은 차광률이 낮은 피복자재가 높았다. 묘소질은 방울토마토에서 30%차광막 처리가 생체중이 주당 6.17g, 건물중 0.53g, 초장 26.1cm로, 일반토마토에서도 30% 차광막 처리가 생체중이 주당 7.33g, 건물중 0.71g, 초장 27.0cm로 다른 처리보다 우수하였다.


나. 활착실 종류에 따른 활착률 및 묘소질


1) 9월 21일에 접목 활착실의 최저온도는 베드 활착실이 벤치 활착실보다 0.41.5℃, 최고온도는 1.4~3.0℃ 낮아 온도 하강효과가 크게 나타났다. 12월 18일


- 78 -

30% 차광막 처리에서의 접목 활착실내 최고온도는 벤치 활착실이 베드 활착실보다 0.9℃ 높아 차광 및 단열이 낮은 피복자재가 가장 높았다. 저온기에는 활착실 바닥에 살수하는 것이 냉방효과보다 포화습도를 유지하는데 큰 효과가 있었다.

2) 벤치 활착실에서 9월 18일 접목 활착률은 방울토마토의 경우 알루미늄증착필름(차광 54%‧보온 57%)과 80g‧m- 2 부직포가  차광률이 높아지기 때문에 다른 처리에 비해 높았다. 또한 일반토마토는 알루미늄증착필름(차광 54%‧보온 57%) 처리가 다른 처리보다 높았다. 11월 1일 접목의 경우 방울토마토는 80g‧m- 2부직포, aluminum- coated polyester film(차광 90%‧보온 98%), 알루미늄증착부직포 처리가 각각 70, 68, 67%로, 일반토마토서는 93~96%로 대부분 처리 간에 차이가 없었다. 12월 13일 접목의 경우 50% 차광막이 두 품종 모두 접목 활착률 100%로 우수하였다. 

3) 베드 활착실에서의 접목 활착률은 9월 18일 접목의 경우 aluminum- coated polyester film(차광 90%‧보온 98%)이 평균적으로 우수하였고, 11월 1일 접목의 경우는 50% 차광막과 12월 13일 접목할 경우 알루미늄증착필름(차광 64%‧보온 62%)이 높았다.



2. 활착실 환경조건에 따른 토마토 접목묘의 소질


가. 피복자재와 활착실 종류


1) 접목 활착실은 차광 피복자재 2종류, 벤치 및 베드에서 육묘하여 비교하였다. 방울토마토에서 접목묘와 실생묘의 묘소질을 비교한 결과는 실생묘가 생체중이 주당 7.50g, 건물중 0.91g, 초장 35.4cm로 접목묘에 비해 생육이 우수하였다.

2) 방울토마토 접목묘의 묘소질은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 생체중이 주당 5.64g, 건물중 0.76g, 초장 23.7cm로 다른 접목 활착실 및 차광 처리에 비해 생체중 및 건물중이 무겁고, 초장은 1~1.1㎝가 적어 우량묘가 되었다. 


- 79 -

3) 일반토마토 접목묘의 묘소질은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 생체중이 주당 6.98g, 건물중 0.98g, 초장이 23.9cm로 다른 활착실 및 차광 처리에 비해 생체중 및 건물중이 무겁고, 초장은 0.1~1.7cm가 작아 우량묘가 되었다.

4) 방울토마토 접목묘의 화방형성은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가1화방 형성 절간수가 8.1, 3화방까지 총 절간수가 14.5로 다른 처리에 비해 0.3~1.3절간이 낮아졌고, 화방형성 지연의 억제효과가 있었다.

5) 일반토마토 접목묘의 화방형성은 베드 활착실의 aluminum- coated polyester film(차광 90%‧보온 98%) 처리가 1화방 형성의 절간수가 11.8로, 3화방까지 총 절간수가 18.0로 다른 처리에 비해 1.1~1.6절간이 낮아졌고, 화방형성 지연의 억제효과가 있었다. 또한 화방형성 지연의 억제효과는 일반토마토가 방울토마토보다 더 높은 경향이었다.


나. 환기 시기와 지연 접목


1) 접목 활착실의 환기 시기는 접목 후 4일부터 야간에 시작하고, 환기가 지연 되면 접목 부위에서 발근이 시작되었다.

2) 대목 자엽 액아에서의 측지 발생은 자엽위에 접목을 실시하면 발생되었다. 즉 접목 묘령은 대목과 접수의 잎이 2~3매 되었을 때 실시하면 적정 시기이고, 적정 묘령보다 늦게 대목의 자엽 위에서 접목할 경우 접목 부위의 유합조직이 늦게 형성되면서 접목 활착이 지연되고, 접목 부위가 견고하지 않았다.



3. 접목묘 재배 시 시비량이 생육, 수량 및 품질에 미치는 영향


가. 촉성재배


1) 촉성재배의 경우 상품수량은 꼬꼬/카게무샤에서 표준시비량(17,427kg/10a) 대비 40% 시비가 10.4%, 표준시비량의 60%는 6.6% 증수하였다.


- 80 -

2) 모모타로요크/카게무샤서는 표준시비량 60%가 표준시비량(16,287kg/10a)보다21.1%, 40% 시비도 12.4% 증수하였다.

3) 품질 요소인 방울토마토의 평균과중은 표준시비량의 40%, 60% 시비가 각각 11.5g, 11.6g으로 표준시비량보다 무거웠다.


나. 반촉성재배


1) 방울토마토에서 꼬꼬/카게무샤의 초장은 표준시비량이 247cm, 꼬꼬/솔루션도 표준시비량 처리가 237cm로 가장 컸다. 일반토마토에서 모모타로요크/카게무샤의 초장은 표준시비량이 234cm로 가장 크고, 경경도 1.81cm로 굵었다. 모모타로요크/솔루션의 경경은 표준시비량의 120% 처리가 1.92cm로 가장 굵었다.

2) 방울토마토의 꼬꼬/카게무샤에서 총수량은 표준시비량 처리가 10,875kg/10a 으로 가장 많았고, 표준시비량의 40% 처리와 비슷한 수량을 보였다. 그러나 상품수량은 표준시비량의 40%가 10,103kg/10a로 표준시비량 처리보다 증수하는 경향이었다. 꼬꼬/솔루션에서도 비슷한 결과를 보였다. 꼬꼬/솔루션에서 총수량은 표준시비량의 40%가 9,745kg/10a로 표준시비량보다 6.8%, 상품수량도 9,135 kg/10a로 7.5% 증수하였다.

3) 일반토마토의 모모타로요크/카게무샤에서 총수량은 표준시비량이 17,113 kg/10a, 상품수량도 표준시비량이 15,306kg/10a로 가장 증수하였다. 모모타로요크/솔루션에서 총수량은 표준시비량의 120%가 15,043kg/10a으로, 상품수량도 12,111kg/10a로 표준시비량보다 각각 4.7%, 6.4% 증수하였다.

4) 방울토마토 꼬꼬/카게무샤의 1과중은 표준시비량 처리가 13.3g으로 다른 처리보다 무거웠으며, 가용성고형물 함량은 표준시비량의 60% 처리가 6.5°Brix로 높은 경향이었다. 모모타로요크/카게무샤의 1과중은 표준시비량의 100%와 표준시비량의 120% 처리가 각각 127g, 128g으로 다른 처리보다 무거웠다. 일반토마토의 가용성고형물 함량은 표준시비량의 60% 처리가 두 대목 품종 모두 각각 6.5°Brix, 6.7°Brix로 가장 높았다.



- 81 -

다. 억제재배


1) 방울토마토의 상품수량에서 꼬꼬/카게무샤는 표준시비량(5,482kg/10a)대비40% 시비가 4% 증수 하였고, 꼬꼬/솔루션은 표준시비량(4,258kg/10a) 대비 40% 시비가 15.0% 증수하였다. 일반토마토의 상품수량에서 모모타로요크/카게무샤는 표준시비량(5,152kg/10a) 대비 60% 시비가 24% 증수하였고, 모모타로요크/솔루션은 표준시비량(7,098kg/10a) 대비 120% 시비가 23% 증수하였다.

2) 방울토마토의 1과중은 꼬꼬/카게무샤에서 표준시비량의 40%가 다른 시비량보다 무거웠고, 가용성고형물 함량은 실생묘 표준시비량 처리가 7.7°Brix로 접목묘 시비량 처리보다 1.1°Brix 높아졌다.가용성고형물 함량은 시비량 간에 각 품종 모두 일정한 경향이 없었다.

이상의 결과를 종합하여 보면 차광 및 단열 피복자재에 따른 접목 활착률은 고온기 접목의 경우 방울토마토에서 aluminum- coated polyester film(차광 90%‧보온 98%)과 알루미늄증착필름(차광 64%‧보온 62%)이, 일반토마토에서는 알루미늄증착필름(차광 64%‧보온 62%)이 우수하였다. 그리고 저온기의 접목 활착률은 방울 및 일반토마토 모두 30% 차광막이 높았다. 또한 접목 활착률이 높은 처리가 생체중과 건물중이 높은 것은 활착이 조기에 이루어졌기 때문이라고 판단된다.

접목 활착실의 종류를 비교한 결과, 고온기에는 베드 활착실이 바닥에 지하수흘러대기를 함으로서 활착실내의 온도하강 효과가 크고, 피복자재로는 aluminum - coated polyester film(차광 90%‧보온 98%)이 차광 및 단열효과가 높아 유리하였다. 그리고 겨울철 저온기에는 광량이 적으므로 차광률이 낮은 피복자재인 50% 차광막의 벤치 활착실이 베드 활착실보다 유리하였다.

접목묘의 화방착생은 베드의 접목 활착실내 aluminum- coated polyester film (차광 90%‧보온 98%) 피복이기온 하강과 차광 및 단열 효과가 높아서 지연 억제효과가 크게 나타났다. 접목 활착실의 환기는 접목 4일되면 접목 부위에서 발근이 되므로 적기에 실시해야 한다. 접목의 적정 묘령을 경과한 대목은 자엽위에 접목할 경우 자엽 액아에서 측지가 발생되고, 활착률이 떨어지며 접목부위가 견고하지 않았다.


- 82 -

토마토 접목묘 재배 시 적정 시비체계를 확립하고자 재배 작형별로 시험한 결과 꼬꼬/카게무샤와 꼬꼬/솔루션은 표준시비량의 40%가 촉성, 억제 및 반촉성 재배에서 다른 처리보다 수량성이 양호하고 1과중이 무거웠다. 모모타로요크/카게무샤는 표준시비량의 60%가 촉성과 억제재배에서, 표준시비량은 반촉성 재배에서 다른 처리보다 수량성이 높았다. 모모타로요크/솔루션은 표준시비량의 120%가 억제와 반촉성 재배에서 다른 처리보다 수량성이 우수하였고, 모모타로요크/카게무샤보다 시비량이 많을 때 증수되는 것을 보면 대목의 흡비력에 따라 다르게 시비해야할 것으로 판단된다.























- 83 -

Ⅵ. 인용문헌



Adams, P., G.W. Winsor, and J.D. Donald. 1973. The effects of nitrogen, potassium and sub- irrigation on the yield, quality and composition of single- truss tomatoes. J. Hort. Sci. 48:123- 133.


靑木宏史, 荻原佐太郞, 湯橋勤. 1979. トマトの接ぎ木栽培における臺木と品質. 園學發表要旨(春季) 158- 159.


Barnett, J.R. and I. Weatherhead. 1988. The effect of scion water potential on graft success in Sitka spruce (Picea sitchensis). Ann. Bot. 64:9- 12.


Beeson, R.C. and W.M. Proebsting. 1988a. Photosynthate translocation during union development in Picea grafts. Can. J. For. Res. 18:989- 990.


Beeson, R.C. and W.M. Proebsting. 1988b. Relationship between transpiration and water potential in grafted scions of Picea. Physiol. Plant 74:481- 486.


Beeson, R.C. and W.M. Proebsting. 1988c. Scion water relations during union development in Colorado blue spruce grafts. J. Amer. Soc. Hort. Sci. 113:427- 431.


Beeson, R.C. and W.M. Proebsting. 1989. Pieca graft success. Effects of environment, root stock disbudding growth regulators, and antitranspirants. HortScience 24:253- 254.


Calvert, A. 1964. The effect of air temperature on growth of young tomatoes 


- 84 -

in natural light conditions. J. Hort. Sci. 39:194- 211.


조정래, 조재구, 신원교, 박중춘. 1995. 원예작물 일관생산체계를 위한 공정육묘 시스템 개발. 농촌진흥청 공동연구보고서 pp. 78- 153.


조수현, 조병옥, 안문섭, 최승출. 1996. 시설토마토 관비기준 설정 시험. 강원도 농촌진흥원 시험연구보고서 pp. 253- 257.


최관순. 1994. 고추‧토마토. 오성출판사, 서울.


Choi, Y.H., J.W. Cheong, G.B. Kweon, and K.Y. Kang. 1996. Effect of nighttime temperature in the nursery on growth of seedlings, field- grown plants and yield of tomatoes in late raising. RDA. J. Agr. Sci. 38:421- 426.


정희돈, 김문수, 김상규, 최동진, 윤선주. 1996. 토마토의 접목재배법 개발에 의한 연작장해의 예방에 관한 연구. 농림수산부 용역보고서 pp. 4- 5.


Chung, H.D., S.J. Youn, and Y.J. Choi. 1997. Effects of rootstocks and nitrogen levels on plant growth, fruit quality and infection of Root Rot Fusarium wilt disease in the grafted- tomato plants. J. Bio. Fac. Environ. 6:151- 158.


정주호, 이상규, 최재웅, 남기웅. 1997. 토마토 접목시 대목종류와 접목방법이 활착 및 생육과 품질에 미치는 영향. 원예연구소 시험연구보고서 pp. 157- 170.


정주호, 이상규, 이정수, 최재웅. 1995. 과채류 기계접목 후 활착률 증진을 위한 환경조건 구명 연구. 원예연구소 시험연구보고서 pp. 241- 243.


Dufault, R.J. and L. Waters. 1985. Container size influences transplant growth 


- 85 -

and yield. Hortscience 20:682- 684.


藤井建雄. 1947. 蕃茄の花の發育に關する硏究(第2報). 發育中の溫度と花の分化發育との關係. 園學雜誌 16:66- 76.


Fukui, H., A. Yamada, and M. Nakamura. 1990. Study on grafting tomato seedling cultured by plug system. J. Jpn. Soc. Hort. Sci. 59(Suppl. 2):354- 355.


Hartmann, H.T., D.E. Kester, F.T. Davis, and R.L. Geneve. 2002. Plant propagation: Principles and practices. 7th ed. Prentice Hall, Upper Saddle River, New Jersey. pp. 341- 403.


Huang, Y., H. Wang, and T. Sheen. 1999. Influence of plug cell modification on the pan root and growth of tomato (Lycopersicon esculentum Mill. cv. Hawlien- Yasu No.5). J. Chinese Soc. Hort. Sci. 45:192- 202.


황기성, 이성재, 박진면. 1995. 방울토마토 재배지 토양중 양분함량이 수량 및 품질에 미치는 영향. 원예연구소 시험연구보고서 pp. 802- 808.


Hwang, H., K.D. Ko, and J.I. Son. 1995. Study on development of automatic grafting system for fruit bearing vegetable seedlings. Ministry of Agr. and For. Agr. Spec. Res. Rpt. pp. 68.


Iizuka, H., H. Tataki, K. Kurihara, T. Suda, and F. Hoshino. 1988. The integrated control for soil- borne diseases of forced tomato. Gunma J. Agr. Res. Ser. A 5:55- 58.


井上 滿, 土崎知久. 1987. トマトの新接ぎ木方法. 千葉縣農總合試驗場硏究報告 第28號:1- 8.


- 86 -

Itagi, T., K. Nakanishi, and S. Nagashima. 1990. Studies on the production system of the grafted nurseries in fruit vegetables. 1. Methods of grafting, the kind of nursery tray, conditions of acclimatization and the process during raising nurseries in tomato. J. Jpn. Soc. Hort. Sci. 59(Suppl. 1):294- 295.


Itagi, T., H. Sato, K. Nakanishi, and S. Nagashima. 1991. Studies on the production system of the grafted nurseries in fruit vegetables. 2. Causal effects of various factors in grafting techniques, seedling age, joint impact between stock and scion, cutting position and angle of stem, on subsequent of tomato seedlings. J. Jpn. Soc. Hort. Sci. 60(Suppl. 1):234- 235.


Itagi, T., H. Sato, S. Nagashima, and K. Naganishi. 1992a. Studies on the avoidance of high summer temperature stress which induce quality reduction of the tomato seedling. 3. Effects of seedling age, position and angle of stem cutting and acclimatization methods on subsequent growth of the grafted seedlings of cucumber and watermelon. J. Jpn. Soc. Hort. Sci. 61(Suppl. 1):240- 241.


Itagi, T., H. Sato, S. Nagashima, and K. Naganishi. 1992b. Studies on the avoidance of high summer temperature stress which induce quality reduction of the tomato seedling. 1. Recovery of a normal condition by the low night temperature in some characters, flower setting position, growth and fruit yield. J. Jpn. Soc. Hort. Sci. 61(Suppl. 1):252- 253.


Jang, S.W., J.N. Lee, J.T. Lee, and W.B. Kim. 1996. Effect of highland-  raised seedling on cultivation of tomato under controlled conditions during winter season in lowland. RDA. J. Agr. Sci. 38:427- 432.


Jeong, B.R. and O.I. Kim. 1999. Effect of day/night temperature during seedling


- 87 -

culture on the growth and nodes of early flower cluster set of ´Seokwang´ tomato. J. Bio. Environ. Control 8:75- 82.


Jeong, B.R., O.I. Kim, and Y.S. Chae. 1999. Effect of day/night temperatures, and N concentration and NH4+:N03-  ratio of nutrient solution on the differentiation of flower buds, node of early fruit set, and growth of ´Seokwang´ tomato. J. Kor. Soc. Hort. Sci. 40:287- 293.


加藤 徹. 1964. 果菜育苗中の地溫, 氣溫と苗の生態との關係. 農及園 39:1135- 1136.


Katsumata, H. and K. Moriwaki. 1971. Studies on grafting of vegetable (Ⅰ) Transport of nutrients from rootstock to scion in grafting of cucumber and tomato plant. Res. Bul. Aichi Agr. Res. Ctr. B(Hort.) 3:37- 43.


Kawai, J., N. Onouti, K. Niwa, and T. Ito. 1996. The development of graftages for seedlings raised in cellular- form- pots and simple acclimating equipment in tomato plants. Res. Bul. Aichi Agr. Res. Ctr. 28:149- 155.


김기돈, 이환구, 민영기, 임엄량, 윤화모. 2000a. 적정 관비 처리농도가 토마토 수량 및 품질에 미치는 영향. 충청남도농업기술원 시험연구보고서 pp. 365- 369.


김기돈, 민영기, 김학헌, 이환구, 임엄량, 김영운, 윤화모. 1999. 고온기 폐광의 냉풍을 이용한 토마토 육묘효과 구명 시험. 충청남도농업기술원 시험연구보고서 pp. 303- 310.


Kim, Y.B., Y.H. Hwang, and W.K. Shin. 1999. Effects of root container size and seedling age on growth and yield of tomato. J. Kor. Soc. Hort. Sci. 40:163- 165.



- 88 -

김영봉, 신정호, 황해준, 노치웅, 조정래. 2000b. 토마토 고온기 육묘시 제1화방저절위 착과방법. 경상남도농업기술원 시험연구보고서 pp. 252- 254.


Kim, Y.H., C.S. Kim, J.W. Kim, and S.G. Lee. 2001. Effect of vapor pressure deficit on the evapotranspiration rate and graft- taking of grafted seedlings population under artificial lighting. J. Bio. Environ. Control 10:232- 236.


Kim, Y.H. and H.S. Park. 2001. Evapotranspiration rate of grafted seedlings effected by relative humidity and photosynthetic photon flux under artificial lighting. J. Kor. Soc. Agr. Machinery 26:379- 384.


五島善秋, 山下昭治. 1964. 植物養分が花芽分化に及ぼす影響. 植物養分と花成硏究. 養賢堂 pp. 30- 34.


近藤雄次. 1974. 果菜類のつぎ木栽培技術(1). 農及園 49:417- 422.


甲田暢南, 荻原佐太郞. 1978. スイカの肥培に關すゐ硏究(第2報). 臺木別養分吸收特性. 千葉縣農業試驗場硏究報告 19:31- 41.


甲田暢南, 荻原佐太郞. 1984. トマトの接ぎ木栽培における臺木別の生育‧養分吸收‧光合成特性. 千葉縣農業試驗場硏究報告 25:101- 111.


Lee, J.M. 1989. On the cultivation of grafted plants of cucurbitaceous vegetables. J. Kor. Soc. Hort. Sci. 30:169- 179.


Lee, J.M. 1994. Cultivation of grafted vegetables Ⅰ. Current status, grafting methods, and benefits. HortScience 29:235- 239.



- 89 -

Lee, S.G., J.U. Choi, K.Y. Kim, J.H. Chung, and Y.B. Lee. 1997a. Effect of rootstocks and grafting methods on the growth and fruit quality of tomato. RDA. J. Hort. Sci. 39(2):15- 20.


Lee, J.H., H.D. Chung, Y.C. Um, D.K. Park, and J.K. Kwon. 1997b. Mass production of grafted nursery plant by splice grafting method in oriental melon. RDA. J. Hort. Sci. 39(1):22- 29.


Lee, S.G., H.W. Lee, K.D. Kim, and J.W. Lee. 2001. Effects of shading rate and method of inside air temperature change in greenhouse. J. Bio. Environ. Control 10:80- 87.


임재현, 박진면. 1999. 토마토 관비재배시 적정 시비기준 설정. 원예연구소 시험연구보고서 pp. 281- 285.


Lim, K.B., S.K. Son, and J.D. Chung. 1997. Influences of DIF on growth and development of plug seedlings of Lycopersicon esculentum before and after transplanting. J. Bio. Fac. Environ. Control 6:34- 42.


Marius, G.A., L.H. Jacobsen, and J.J. Brondum. 1990. Negative DIF: The effect of temperature drop prior to daybreak on internode length of young tomato seedlings. Tidsskr. Planteavl 94:503- 506.


Marr, C.W. and M. Jirak. 1990. Holding tomato transplants in plug trays. HortScience 25:173- 176.


Matsuzoe, N., M. Ali, H. Okubo, and K. Fujieda. 1990. Effect of temperature on the growth of tomato plants grafted on wild Solanum. J. Jpn. Soc. Hort. Sci. 59(Suppl. 2):390- 391.


- 90 -

Matsuzoe N., H. Nakamura, M. Ali, and K. Hanada. 1991. Growth yield and mineral content in leaves of tomato plants grafted on Solanum rootstocks. J. Jpn. Soc. Hort. Sci. 60(Suppl. 2):344- 345.


Matsuzoe, N., H. Nakamura, H. Okubo, and K. Fujieda. 1993. Growth and yield of tomato plants grafted on Solanum rootstocks. J. Jpn. Soc. Hort. Sci. 61:847- 855.


松山松夫, 松田勇二, 川岸幸男, 數馬俊晴, 山口 務. 1985. 果菜類接ぎ木苗の量産 化に關する硏究. 1. トマト接ぎ木苗の活着‧苗質に及はす環境諸要因の影響. 福井農試報 22:1- 9.


眞柄紘一. 1978. トマトの新接ぎ木方法. 農業および園藝 53:668- 672.


守田伸六. 1988. 果菜類の接着劑利用による新接ぎ木法. 農業及園藝 63:1190- 1196.


Nagaoka, M. and Y. Mitui. 1991. Studies on multi- grafting system. 3. Favorable conditions of acclimatization in grafted cucumber. J. Jpn. Soc. Hort. Sci. 60(Suppl. 1):232- 233.


長岡正昭, 高橋和彦, 松山松夫. 1982. トマト接ぎ木苗の活着に及はす環境條件の影響. 野菜茶業試驗場栽培硏究年報 9:67- 73.


Nagaoka, M. and K. Tsuji. 1990. Study on multi- grafting system. 2. The formation of successful graft in cabbage grafted on kale and its subsequent growth yield. J. Jpn. Soc. Hort. Sci. 59(Suppl. 2):350- 351.


中森英太郞. 1968. 果菜類接ぎ木苗の生理生態學的硏究. 農林統計協會, 東京.



- 91 -

국립농산물품질관리원(NAPQMS). 2004. 농업통계정보 인터넷 자료.


Nobuoka T., Y. Kobasiri, T. Taimatsu, and H. Maegawa. 1992. Studies on the improvement in production of grafted nurseries in vegetables. 1. Trial on a simplified production system for grafted vegetable nurseries by capillary watering. J. Jpn. Soc. Hort. Sci. 61(Suppl. 1):242- 243.


Nobuoka, T., M. Oda, and H. Sasaki. 1996. Effects of relative humidity, light intensity and leaf temperature on transpiration of tomato scions. J. Jpn. Soc. Hort. Sci. 64:859- 865.


Nobuoka, T., M. Oda, and H. Sasaki. 1997. Effects of wind and vapor pressure deficit on transpiration of tomato scions. J. Jpn. Soc. Hort. Sci. 66:105- 112.


信岡 尙, 泰松恒男, 小走善宣. 1994. セル苗利用にょる野菜の接ぎ木苗生産の效率化に關する硏究. 1. 底面給水用マツトの接ぎ木苗馴化裝置の開發. 奈良農試年報 35:1- 8.


NVOTRI. 1993. The present condition of culture with grafting of vegetable. Natl. Veg., Ornam. & Tea Res. Inst. Res. Rpt. Jpn. 6:1- 109.


Oda M. 1995. New grafting methods for fruit- bearing vegetables in Japan. JARQ 29:187- 137.


Oda, M., M. Nagaoka, T. Mori, and M. Sei. 1994a. Simultaneous grafting of young tomato plants using grafting plants. Scientia Hort. 58:259- 264.


Oda, M., K. Tsuji, K. Ichimura, and H. Sasaki. 1992. Vascular bundle development and growth of cucumber grafted on Cucurbita spp. at hypocotyl. 


- 92 -

J. Jpn. Soc. Hort. Sci. 61(Suppl. 1):244- 245.


Oda M., K. Tsuji, K. Ichmura, and H. Sasaki. 1994b. Factors affecting the survival of cucumber plants grafted on pumpkin plants by horizontal grafting at the hypocotyl level. Bul. Natl. Res. Inst. Veg. Ornam. Plants Tea. A 9:51- 60.


Ohkawa, H. and G. Hayashi. 1998. Application of the fertigation system for growth control in direct planting culture of tomato plug seedling. Res. Bul. Aichi Agr. Res. Ctr. 30:121- 129.


Ohta, K., N. Ito, T. Hosoki, and Y. Sugi. 1990. Studies on fruit quality of cherry tomato in solution culture. 5. Influence of potassium chloride and potassium sulfate on fruit quality, yield and growth. J. Jpn. Soc. Hort. Sci. 59(Suppl. 1):296- 297.


박인희, 박권서, 김지광, 임엄량, 유승헌. 2003. 토마토 우량육묘 생산기술 체계확립 연구. 농촌진흥청 공동연구보고서 pp. 79- 99.


Park, J.Y. and H.D. Chung. 1989. Effect of several rootstocks on plant growth, fruit quality and yield in oriental melon. J. Kor. Soc. Hort. Sci. 30:262- 270.


농촌진흥청. 1995. 농사시험연구조사기준. 수원.


농촌진흥청 농업과학기술원. 1999. 작물별 시비처방기준. 수원.


薺藤 隆, 今野義孝, 伊東秀夫. 1963. トマトの生育ならびに開花‧結實に關する硏究(第4報). 育苗期の床土の肥瘠, 灌水量および株間が生育ならびに開花‧結實に及ぼす影響. 園學雜誌 32:186- 196.


- 93 -

薺藤 隆, 伊東秀夫. 1971. トマトの生育ならびに開花‧結實に關する硏究(第11報). 花の發育ならびに形態に及ぼす溫度の影響. 園學雜誌 40:28- 37.


Scholberg, J.L., B.L. McNeal, K.J. Boote, J.W. Jones, S.J. Locascio, and S.M. Olson. 2000. Nitrogen stress effects on growth accumulation by field- grown tomato. Agron. J. 92:159- 167.


Scott, J.W. and W.L. George. 1984. Influence of pollination treatments on fruit set and development in parthenocarpic tomato. HortScience 19:874- 876.


嶋田興司. 1980. 接木作物の榮養生理. 農業および園藝 55:218- 222.


鈴木正肚. 1990. 接木自動化. 農業および園藝 65:123- 130.


高尾宗明, 田中幸孝. 1984. 促成トマトの接ぎ木栽培に關する硏究. 千葉縣農總合試驗場硏究報告B(園藝) 第3號:49- 54.


渡部一郞, 板木利隆. 1990. 電氣利用にょる野菜の育苗と栽培. 社團法人 農業電化協會 pp. 116- 137.


Went, F.W. 1974. The effect of low temperature in tomato. Plant Physiol. 24:505- 516.


Whitewell, J.D. and J. Crofts. 1972. Studies on the size of cauliflower transplants in relation to field performance with particular reference to date of maturity and length of cutting season. Expt. Hort. 23:34- 42.


Wittwer. S.H. and F.G. Teubner. 1956. Cold exposure of tomato seedlings and


- 94 -

flower formation. J. Amer. Soc. Hort. Sci. 67:75- 78.


Wittwer. S.H. and F.G. Teubner. 1957. The effect of temperature  and nitrogen nutrition of flower formation in the tomato. Amer. J. Bot. 44:125- 129.


矢吹萬壽. 1985. 植物の動的環境. 朝倉書店.


Yamada, R., T. Kato, M. Seki, and I. Hayakawa. 1996. Rational manuring management of greenhouse tomatoes based on real- time nutritional diagnosis of plants and soil Ⅱ. Methods of rational fertilizer application for sustainable production. Res. Bul. Aichi Agr. Res. Ctr. 28:133- 140.














- 95 -

ABSTRACT



Environmental Conditions of Propagation Facilities for Production of Grafted Tomato Seedlings and Proper Fertilizer Levels in Protected Cultivation



Hwan- Gu Lee



Department of Horticulture, Graduate School

Chungnam National University

Daejeon, Korea


(Supervised by Professor Young- Bok Lee)



This experiment was carried out to investigate the effective acclimation environment for grafted seedling plant of tomatoes for the practical mass production of grafted seedlings. A proper fertilization system was also examined to prevent both quality loss and yield decrease due to excess growth of grafted seedlings. The results are as follows;

A thesis submitted to the committee of Graduate School, Chungnam National University in a partial fulfillment of the requirements for the degree of Doctor of Philosophy in Agricultural Science conferred in August 2005.


- 96 -

1. Rate of successful grafted union and quality during acclimation in propagation facilities of grafted tomato seedlings on influenced by various shading materials.


On the experiment of October 11, there was difference in the rate of successful grafted union between tomato cultivars and shading materials. In Koko/Kagemusya, aluminum- coated polyester film (shading 90% with heat insulation 98%) showed the highest rate of successful grafted union as 89% and followed by aluminized polyester sheet (shading 64% with heat insulation 62%) as 87%. However, in Momotaroyork/Kagemusya, the most effective shading material was aluminized polyester sheet (shading 64% with heat insulation 62%) as 99% and followed by aluminized polyester sheet (shading 54% with heat insulation 57%) as 95%. The quality of grafted tomato seedling was relatively superior in aluminized polyester sheet (shading 64% with heat insulation 62%) regardless tomato cultivars. The quality of grafted tomato seedling was higher than the increase of rate of successful grafted union.

On the experiment of November 23, the rate of successful grafted union of Koko/Kagemusya was 95% in 30% shading curtain treatment and 96% in Momotaroyork/Kagemusya by 30% and 50% shading curtain treatment, respectively. In winter season when light energy was limited, high transmittant shading material was beneficial for the increase of rate of successful grafted union.

The treatment of 30% shading curtain showed the highest quality of grafted tomato seedlings regardless of cultivars. Thus, Koko showed 6.2 g in fresh weight, 0.53 g in dry weight, and 26.1 cm in plant height. Momotaroyork also showed the most effective result in grafted seedling quality and thus, 7.3 g in fresh weight, 0.71 g in dry weight and 27.0 cm in plant height.


- 97 -

2. Rate of successful grafted union and quality of grafted tomato seedlings as influenced by propagation facilities type.


On September 18, the higher rate of shading was effective on rate of successful grafted union of Koko/Solution in bench type propagation facility. Similar results were obtained in Momotaroyork/Solution. Thus, aluminized polyester sheet with 54% shading and 57% heat insulation was effective. On November 1, the rates of successful grafted union were 70% in non- woven fabric (80 gm- 2), 68% aluminum- coated polyester film (shading 90% with heat insulation 98%) and 67% aluminum- coated non- wovenfabric film, respectively. However, no difference was found in Momotaroyork. The rate of successful grafted union ranged from 93% to 96% regardless of treatments. On December 13, both cultivars showed 100% successful grafted union in 50% shading curtain.

Unlike bench type propagation facility, in bed type, aluminum- coated polyester film(shading 90% with heat insulation 98%) showed the superior results in average on September 18. However, 50% shading film and aluminized polyester sheet with 64% shading was better than others on Nov. 1 and December 12, respectively.



3. Physiological defects of grafted tomato seedlings influenced by environment of propagation facility.


When the quality of grafted tomato seedlings were compared, the young plant from seedling were excellent such as fresh weight (7.5 g/plant), dry weight (0.91 g/plant), and height (35.4 cm/plant). Grafted tomato seedlings (Desert/Solution) produced using bed type propagation facility covered by aluminum- coated polyester film (shading 90% with heat insulation 98%) were 


- 98 -

higher in quality compared to others. Their fresh weight and dry weight were higher than other treatment but plant height was lower. Grafted tomato seedlings, Regend/Solution, were higher in fresh weight and dry weight but lower in height when produced from bed type with aluminum- coated polyester film (shading 90% with heat insulation 98%). In cultivar of Desert/Solution, the treatment of bed type with aluminum - coated polyester film (shading 90% with heat insulation 98%) shading effectively reduced the location of 1st flower cluster as 8.1 nodes and total node numbers to the location of 3rd flower cluster were 14.5. Thus, the node of flower cluster lowered up to 1.3 nodes.

In cultivar of Regent/Solution, the 1st flower cluster was developed in 11.8 nodes and the average of node number up to 3rd cluster were 18.0. There was a decrease of 1.1 to 1.6 node of flower cluster induction compared to other treatments. 



4. Growth, yield and fruit quality of grafted tomatoes as influenced by level of N- K2O fertilization.


In forcing culture of Koko/Kagemusya, the yield increases of marketable fruit were 10.4% in 40% level of stand fertilization and 6.6% in 60% level of fertilization compared to the yield of standard fertilization (17,427 kg/10 a). Momotaroyork/Kagemusya also showed similar results. The treatments of 60% and 40% standard level of fertilization resulted in the yield increase of 21.1% and 12.4%, respectively. The average weights of fruit were higher in reduced level of fertilization.

In retarding cultivation, the yield of Koko/Kagemusya and Koko/Solution were 5,482 kg/10 a and 4,258 kg/10 a at standard fertilization treatment whereas there were 4% and 15% increase in yield at reduced fertilization


- 99 -

treatment in the order. 

Momotaroyork/Kagemusya showed 24% increase of yield at 60% reduced treatment but Momotaroyork/Solution did 23% increase when 20% more fertilizer was applied. Even each fruit weight was higher in 40% level treatment in Koko/Kagemusya, there was a decrease of soluble solid content by 0.6 °Brix compared to seedlings. There was no difference between fertilization treatments.

In semi- forcing culture, the average plant height of Koko/Kagemusya, Koko/Solution and Momotaroyork/Kagemusya were higher than other treatment by 247 cm, 237 cm and 234 cm in standard fertilization. In semi- forcing culture of cherry tomato, the total yield of Koko/Kagemusya was 10,875 kg/10 a and no difference in 40% fertilization of standard level. However, the yield of marketable fruit was 2.5% higher in 40% fertilization treatment. Koko/Solution also showed similar results. Results indicated that 60% reduction of standard fertilization probably seemed to be benefit to produce marketable fruit.

The total yield of Momotaroyork/Kagemusya was 17,113 kg/10 a and it was 27.4% higher than that of 40% fertilization of standard level. The yield of marketable fruit was also 36.4% higher. However, Momotaroyork /Solution did not showed clear difference in both total and marketable fruit yield.










- 100 -

감사의 글


학문의 길을 인도해 주시고, 이 논문의 시작부터 완성되기까지 애정으로 지도하여 주신 이영복 교수님께 진심으로 감사드립니다. 또한 바쁘신 시간에도 좀더 나은 논문이 될 수 있도록 지도해 주신 최종명 교수님, 이종석 교수님, 황용수 교수님, 성열규 박사님께 감사드립니다. 시종일관 관심과 애정으로 지켜봐 주신 이재창 교수님, 구자형 교수님, 임용표 교수님, 천종필 교수님, 공주대학교 김영칠 교수님, 정재훈 교수님, 채수천 교수님께 감사를 드립니다. 

또한 충청남도농업기술원의 최성호 원장님과 오세현 기술개발국장님, 서관석 과장님, 권경학 과장님, 힘들 때 마다 용기를 주신 이은모 박사님, 한광섭 박사님, 이희덕 박사님께 감사드립니다. 논문 작성 시 어려울 때마다 도와주신 장준택 박사님, 세심한 부분 까지 도와주신 김운섭 박사님, 서정학 박사님, 조임식 박사님께 감사드립니다. 논문 심사과정 중 업무를 도와주신 최용석 선생님, 이영혜 선생님과 직원 선생님 모두에게 감사드립니다. 

실험 수행과정부터 도움을 주신 부여토마토시험장 임엄량 전 장장님, 박인희 팀장님과 민영기 선생님, 부여토마토시험장 직원 선생님께 다시 한번 감사드립니다. 또한 채소원예학 실험실의 황혜연 선생님과 후배들께도 감사의 마음을 전합니다. 

한평생을 자식들 뒷바라지와 잘되기만을 기도해주신 어머님께 감사의 선물과 기쁨을 드리게 되었습니다. 또한 아버님 생전에 근면 성실의 가르침을 주셔서 오늘에 이르게 해주신 것에 대하여 감사드리며, 아버님 영전에 이 작은 결실을 바칩니다. 애정으로 보살펴 주신 장인, 장모님께 깊은 감사를 드리며, 누님 및 형님들 가족과 오랜 시간 인내와 정성으로 뒷바라지 해준 사랑하는 아내 김기석과 유머가 있고 예쁘게 자라 준 소정, 소영과 함께 기쁨을 나누고자 합니다. 


- 101 -